Задачки ;)

Тема в разделе "WASM.CRYPTO", создана пользователем Black_sun, 2 дек 2006.

  1. MHajduk

    MHajduk New Member

    Публикаций:
    0
    Регистрация:
    7 ноя 2006
    Сообщения:
    123
    Да, можно написаить так:

    24 hex = 36 dec = 4*(6 + 3*1)

    :)
     
  2. maxdiver

    maxdiver Max

    Публикаций:
    0
    Регистрация:
    18 июл 2006
    Сообщения:
    308
    Адрес:
    Саратов
    MHajduk
    И это ещё не всё!
    24 hex = 36 dec = 6*(3+4-1)
    Только одно умножение! :)
     
  3. IceStudent

    IceStudent Active Member

    Публикаций:
    0
    Регистрация:
    2 окт 2003
    Сообщения:
    4.300
    Адрес:
    Ukraine
    Оптимизация? :)
     
  4. maxdiver

    maxdiver Max

    Публикаций:
    0
    Регистрация:
    18 июл 2006
    Сообщения:
    308
    Адрес:
    Саратов
    IceStudent
    Да, надо ещё со сдвигами попробовать ;)
     
  5. crypto

    crypto Active Member

    Публикаций:
    0
    Регистрация:
    13 дек 2005
    Сообщения:
    2.533
    Вот такую интересную и необычную задачу нашел сегодня. Есть идеи, как к ней подступиться?
     
  6. flankerx

    flankerx New Member

    Публикаций:
    0
    Регистрация:
    2 июл 2004
    Сообщения:
    423
    Адрес:
    Moscow, Russia
    ИМХО можно. Строятся касательные, по ним восстанавливаются оси и вроде все.
     
  7. FatMoon

    FatMoon New Member

    Публикаций:
    0
    Регистрация:
    28 ноя 2002
    Сообщения:
    954
    Адрес:
    Russia
    crypto
    Начал уже писать, что легко и просто, но подумал о том, что в отсутствии системы координат мы можем произвольно повернуть график... то есть преобразование получится не только сдвиг, но и поворот... Короче, если беря произвольную систему координат для начала, мы "угадываем" параллельно оригинальным осям, то легко и просто восстанавливаем все, строя полином 2-го порядка по 3-м точкам и пересчитывая потом систему координат на первоначальные единичный отрезок и начало. А вот если не угадываем, так навскидку и не скажешь.

    Но нутром чую, что таки можно :) По "кривизне". Взять произвольную систему координат, построить к оставшемуся куску графика касательные (кажется, 2 шт достаточно), находим правильную систему координат, а потом восстанавливаем весь график. Но решать лень.

    Во, пока сочинял способ решения, flankerx уже сказал :)
     
  8. Stiver

    Stiver Партизан дзена

    Публикаций:
    0
    Регистрация:
    18 дек 2004
    Сообщения:
    812
    Адрес:
    Germany
    crypto

    Можно наверное так попробовать:

    принимаем произвольную систему координат, по трем любым точкам на участке находим коэффициенты в ax^2+bx+c. Рисуем график целиком, потом кладем начало координат в экстремум. Для нахождения единичного отрезка сечем график прямой y=x.

    P.S. Когда писал, предыдущего сообщения не было :)
    Да, угол нужен, без касательной не получается обойтись..
     
  9. JAPH

    JAPH New Member

    Публикаций:
    0
    Регистрация:
    23 июн 2007
    Сообщения:
    124
    Чисто геометрический способ.
    Пусть дана дуга параболы AB. Строим хорду AB. Берём на дуге точку C. Через неё проводим прямую, параллельную хорде AB, в пересечении с дугой параболы получаем точку D. Пусть середина AB есть K, середина CD есть L. Пусть точка пересечения KL с дугой параболы есть M. Строим хорду CB. Пусть её середина есть P. Через P проводим прямую, параллельную KL. Пусть она пересекает параболу в точке Q. Из точки M опускаем перпендикуляр на PQ, получаем точку T. Берём на PQ точку R так, чтобы равнялись вектора TQ и QR. Через точку M проводим прямую, параллельную AB, а через точку R - прямую, параллельную CB. Эти прямые пересекутя в точке F. Через точку F проводим прямую, параллельную PQ - получаем ось ординат. Пусть E - середина FM. Из точки E опускаем перпендикуляр на ось ординат - получаем точку O и ось абсцисс. На оси абсцисс берём точку S так, чтобы равнялись вектора OE и ES. Тогда MS || Oy. Берём на SM точку H так, чтобы SH = 2 OS, и H была выше оси x. Через H проводим прямую, параллельную AB. Она пересечёт ось Ox в точке J. Так вот, SJ = 1.
     
  10. crypto

    crypto Active Member

    Публикаций:
    0
    Регистрация:
    13 дек 2005
    Сообщения:
    2.533
    JAPH
    Красивое решение.
    Если честно, пытался все это изобразить, но получается плохо, не могу понять, на чем основаны эти красивые построения. К сожалению, парабола при уже x > 1 очень слабо выпукла, поэтому нарисовать и разобраться пока не удается :-(
    ЗЫ
    У задачи есть продолжение, но я не совсем уверен, что для него решение будет геометрическим.
     
  11. nds

    nds Member

    Публикаций:
    0
    Регистрация:
    16 июл 2007
    Сообщения:
    157
    Wasm forum = E9 8A 29 C8 99 FD D8 09 29 A8
    Чему равно F1 83 F1 B1 F1 80 11 FD 21 B1 51 F1 FD 11 6D 5C
     
  12. JAPH

    JAPH New Member

    Публикаций:
    0
    Регистрация:
    23 июн 2007
    Сообщения:
    124
    crypto
    Продолжение - в смысле, восстановить остальные точки параболы?
    На прямой MS берём точку V так, чтобы MV = MO и точка V была ниже оси абсцисс. Через V проводим прямую d, параллельную оси абсцисс. Она пересечёт ось ординат в точке G. На оси ординат строим точку F' так, чтобы были равны вектора OF' и GO.
    Восстанавливаем точки параболы так: берём на положительной полуоси ординат произвольную точку N, через неё проводим прямую t, параллельную оси абсцисс. Проводим окружность с центром в точке F' и радиусом GN. В пересечении с t эта окружность даст две точки параболы.
     
  13. crypto

    crypto Active Member

    Публикаций:
    0
    Регистрация:
    13 дек 2005
    Сообщения:
    2.533
    JAPH
    Продолжение в смысле для функции 2^x. А в твоем решении я пока не очень разобрался. Может скажешь на словах смысл сих построений?
     
  14. JAPH

    JAPH New Member

    Публикаций:
    0
    Регистрация:
    23 июн 2007
    Сообщения:
    124
    crypto
    Да, для 2^x геометрически не получится.. У неё же нет геометрического определения, в отличие от параболы..
    Построение можно разбить на три этапа.
    Сначала ищется направление оси параболы. Пользуемся тем, что диаметры параболы ей параллельны. Поэтому достаточно построить один диаметр.
    Затем ищется система координат. Начертим параболу, проведём касательную, опустим из точки касания перпендикуляр на ось абсцисс и заметим, что касательная делит отрезок на оси абсцисс пополам, а на оси ординат отсекает отрезок, по длине равный ординате точки касания. Поэтому берутся две точки на параболе, берётся приращение ординаты dy, проводятся касательные, на оси ординат ими высекается отрезок длины dy.
    Затем находится единичный отрезок. Если провести касательную в точке с абсциссой x, тангенс угла наклона будет 2x. Поэтому из вертикального отрезка длины 2x касательная сделает горизонтальный отрезок длины 1.
     
  15. CreatorCray

    CreatorCray Member

    Публикаций:
    0
    Регистрация:
    5 авг 2006
    Сообщения:
    201
    Эта, а может поближе к теме раздела задачки все же подкинем? Мот кому потом решения пригодятся :)

    К примеру такого типа для RSA:
    1) дано PQ и D, известно что D < PQ^(1/4) / 3 - найти P и Q
    2) дано PQ, известно что numBitsOf(abs(P-Q)) <= numBitsOf(P)/2 и numBitsOf(P) == numBitsOf(Q) - найти P и Q
    PQ и D предоставляются в виде HEX чисел. Причем можно постить достаточно большие числа, чтоб не было соблазна тупо факторизовать. Решения же к этим задачам отрабатывают несравнимо быстрее факторизации.

    Стоит ли постить такого рода задачи?
     
  16. bubrk

    bubrk New Member

    Публикаций:
    0
    Регистрация:
    4 июн 2008
    Сообщения:
    2
    Предлагается разгадать зашифрованный текст. Ответ простой, но думать нужно нестандартно )
     
  17. TOLSTOPUZ

    TOLSTOPUZ New Member

    Публикаций:
    0
    Регистрация:
    26 апр 2008
    Сообщения:
    509
  18. bubrk

    bubrk New Member

    Публикаций:
    0
    Регистрация:
    4 июн 2008
    Сообщения:
    2
    совсем без вариантов? :dntknw:
     
  19. kyprizel

    kyprizel New Member

    Публикаций:
    0
    Регистрация:
    1 авг 2003
    Сообщения:
    232
    Адрес:
    TSK
  20. um0v

    um0v New Member

    Публикаций:
    0
    Регистрация:
    10 окт 2008
    Сообщения:
    32
    kyprizel
    Самая сложная судя по баллам :) Деж 6-го места очень даже здорово.