
Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Event - Semaphore Specification

Author: Lou Perazzoli

Original Draft 1.0, January 5, 1989
Revision 1.3, May 11, 1989

Revision 1.4, August 8, 1989
Revision 1.5, October 23, 1989
Revision 1.6, December 1, 1989

Revision 1.7, January 3, 1990
Revision 1.8, January 23, 1990

Windows NT Event/Semaphore Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Event Objects ... 1

2.1 Create Event Object .. 1
2.2 Open Event Object .. 2

2.3 Set Event .. 3
2.4 Reset Event ... 4
2.5 Pulse Event ... 4

2.6 Query Event .. 4

3. Semaphore Objects ... 5
3.1 Create Semaphore Object .. 5

3.2 Open Semaphore Object .. 6
3.3 Release Semaphore Object .. 7

3.4 Query Semaphore ... 8

4.0 Delay Execution .. 9

Windows NT Event/Semaphore Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes the Windows NT event and semaphore objects and the

wait services. A definition and an explanation of operation is given for each API. No
attempt has been made, however, to fully explain all error conditions and their

consequences.

The APIs described include:

NtCreateEvent - create event and open handle

NtOpenEvent - open handle to existing event
NtSetEvent - set event to Signal state
NtResetEvent - set event to Not-Signaled state

NtPulseEvent - set / reset event state atomically
NtQueryEvent - get information about event

NtCreateSemaphore - create semaphore and open handle
NtOpenSemaphore - open handle to existing semaphore
NtReleaseSemaphore - release semaphore

NtQuerySemaphore - get information about semaphore
tDelayExecution - delay execution for the specified time

NtClose - close an object handle

2. Event Objects

There are two types of event objects, notification events and synchronization events.
Notification event objects provide a mechanism for notification. Notification events

are either Signaled (TRUE) or Not-Signaled (FALSE). An event may be set multiple
times, yet the state remains Signaled. Notification events provides no ownership
capability. If multiple threads are waiting on a notification event, then when the

event becomes Signaled, all threads waiting for the event are made "runnable". A
notification event becomes Not-Signaled only when explicitly reset.

Synchronization event objects have the property that when the event is set, the
event attains a state of Signaled, which releases a single thread currently waiting on
the event, and then the event immediately attains a state of Not-Signaled. If there

are no threads waiting on the event, the state of the event remains Signaled. This
allows threads to "synchronize" on the signaling of the event. Like notification
events, synchronization events provide no ownership capability.

A synchronization event attains a state of Not-Signaled when explicitly reset or when
the first wait operation is satisfied on the event. Note that any time an event attains

a state of Not-Signaled, the event count for the state of the event is set to zero.

Windows NT Event/Semaphore Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1 Create Event Object

An event object is created and a handle opened for access to the object with the

NtCreateEvent function:

NTSTATUS

NtCreateEvent (
 OUT PHANDLE EventHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN EVENT_TYPE EventType,
 IN BOOLEAN InitialState
);

Parameters:

EventHandle - A pointer to a variable that receives the event object handle
value.

DesiredAccess - The desired types of access for the event. The following object
type specific access flags can be specified in addition to the

STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

EVENT_QUERY_STATE - Query access to the event is desired.

EVENT_MODIFY_STATE - Modify state access (set and reset) to the event is

desired.

SYNCHRONIZE - Synchronization access (wait) to the event is desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details.

EventType - The type of event object to be created. One of NotificationEvent or
SynchronizationEvent.

InitialState - The initial state of the event object, one of TRUE or FALSE. If the
InitialState is specified as TRUE, the event's current state value is set to

one, otherwise it is set to zero.

The NtCreateEvent function creates an event object with the specified initial state.
If an event is in the Signaled state (TRUE), a wait operation on the event does not

Windows NT Event/Semaphore Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

block. If the event is in the Not-Signaled state (FALSE), a wait operation on the
event blocks until the specified event attains a state of Signaled, the timeout value

is exceeded, or an alert is delivered.

2.2 Open Event Object

A handle can be opened to an existing event object with the NtOpenEvent function:

NTSTATUS
NtOpenEvent (
 OUT PHANDLE EventHandle,
 IN ULONG DesiredAccess,

 IN POBJECT_ATTRIBUTES ObjectAttributes,
);

Parameters:

EventHandle - A pointer to a variable that receives the value of the event object
handle value.

DesiredAccess - The desired types of access to the event. The following object
type specific access flags can be specified in addition to the

STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

EVENT_QUERY_STATE - Query access to the event is desired.

EVENT_MODIFY_STATE - Modify state access (set and reset) to the event is

desired.

SYNCHRONIZE - Synchronization access (wait) to the event is desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes.
Refer to the Object Management Specification for details.

2.3 Set Event

An event can be set to the signaled state (TRUE) with the NtSetEvent function:

Windows NT Event/Semaphore Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtSetEvent (
 IN HANDLE EventHandle,
 OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state
of the event. Zero is Not-Signaled, non-zero is Signaled. The value

indicates the number of times the event has been set since the last reset.

Setting the event causes the event to attain a state of Signaled, which releases all
threads currently waiting on the event. Any threads which issue a wait operation on

the event do not block and continue to execute. It also increments the event count
for the state of the event.

2.4 Reset Event

The state of an event is set to the Not-Signaled state (FALSE) using the
NtResetEvent function:

NTSTATUS
NtResetEvent (
 IN HANDLE EventHandle,
 OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state
of the event. Zero is Not-Signaled, non-zero is Signaled. The value

indicates the number of times the event has been set since the last reset.

Once the event attains a state of Not-Signaled, any threads which wait on the event
block, awaiting the event to become Signaled. The reset event service sets the event

count to zero for the state of the event.

Windows NT Event/Semaphore Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.5 Pulse Event

An event can be set to the Signaled state and reset to the Not-Signaled state

atomically with the NtPulseEvent function:

NTSTATUS

NtPulseEvent (
 IN HANDLE EventHandle,
 OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state
of the event. Zero is Not-Signaled, non-zero is Signaled. The value

indicates the number of times the event has been set since the last reset.

Pulsing the event causes the event to attain a state of Signaled, which releases all

threads currently waiting on the event, and then attain a state of Not-Signaled. The
pulse event service sets the event count to zero for the state of the event.

2.6 Query Event

The state of an event can be queried with the NtQueryEvent function:

NTSTATUS

NtQueryEvent (
 IN HANDLE EventHandle,
 IN EVENT_INFORMATION_CLASS EventInformationClass,
 OUT PVOID EventInformation,
 IN ULONG EventInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

EventInformationClass - The event information class about which to retrieve

information.

EventInformation - A pointer to a buffer that receives the specified information.
The format and content of the buffer depend on the specified event class.

Windows NT Event/Semaphore Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

EventInformation Format by Information Class:

EventBasicInformation - Data type is EVENT_BASIC_INFORMATION.

EVENT_BASIC_INFORMATION Structure

EVENT_TYPE EventType - The type of the event.

LONG EventState - The current state of the event.

EventInformationLength - Specifies the length in bytes of the event information

buffer.

ReturnLength - An optional pointer which, if specified, receives the number of

bytes placed in the event information buffer.

This function provides the capability to determine the state and granted access of
an event object.

3. Semaphore Objects

Semaphore objects provide a mechanism for resource gates. When a semaphore is
created, it is provided an initial count and maximum count. When a thread waits

on a semaphore, if the current count is greater than zero, then the current count is
decremented and the thread continues to execute. If the current count is zero, the

thread blocks until the count becomes greater than zero. When a thread releases a
semaphore, the current count is augmented. Semaphores do not provide
ownership; multiple threads can be waiting and releasing the same semaphore.

3.1 Create Semaphore Object

A semaphore object is created and a handle opened for access to the object with the

NtCreateSemaphore function:

Windows NT Event/Semaphore Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtCreateSemaphore (
 OUT PHANDLE SemaphoreHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN LONG InitialCount,
 IN LONG MaximumCount
);

Parameters:

SemaphoreHandle - A pointer to a variable that receives the value of the
semaphore object handle.

DesiredAccess - The desired types of access for the semaphore. The following
object type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management

Specification.

DesiredAccess Flags

SEMAPHORE_QUERY_STATE - Query access to the semaphore is desired.

SEMAPHORE_MODIFY_STATE - Modify state access (release) to the

semaphore is desired.

SYNCHRONIZE - Synchronization access (wait) to the semaphore is
desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details.

InitialCount - The initial count for the semaphore, this value must be positive
and less than or equal to the maximum count.

MaximumCount - The maximum count for the semaphore, this value must be
greater than zero..

The NtCreateSemaphore function causes a semaphore object to be created which
contains the specified initial and maximum counts.

3.2 Open Semaphore Object

A handle can be opened to an existing semaphore object with the
NtOpenSemaphore function:

Windows NT Event/Semaphore Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtOpenSemaphore (
 OUT PHANDLE SemaphoreHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

SemaphoreHandle - A pointer to a variable that receives the semaphore object

handle value.

DesiredAccess - The desired types of access to the semaphore. The following
object type specific access flags can be specified in addition to the

STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

SEMAPHORE_QUERY_STATE - Query access to the semaphore is desired.

SEMAPHORE_MODIFY_STATE - Modify state access (release) to the

semaphore is desired.

SYNCHRONIZE - Synchronization access (wait) to the semaphore is

desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes.

Refer to the Object Management Specification for details.

3.3 Release Semaphore Object

A semaphore object can be released with the NtReleaseSemaphore function:

NTSTATUS
NtReleaseSemaphore (

 IN HANDLE SemaphoreHandle,
 IN LONG ReleaseCount,
 OUT PLONG PreviousCount OPTIONAL
);

Parameters:

SemaphoreHandle - An open handle to a semaphore object.

Windows NT Event/Semaphore Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ReleaseCount - The release count for the semaphore. The count must be
greater than zero and less than the maximum value specified for the

semaphore.

PreviousCount - An optional pointer to a variable that receives the previous

count for the semaphore.

When the semaphore is released, the current count of the semaphore is
incremented by the ReleaseCount. Any threads that are waiting for the semaphore

are examined to see if the current semaphore value is sufficient to satisfy their wait.

If the value specified by ReleaseCount would cause the maximum count for the

semaphore to be exceeded, then the count for the semaphore is not affected and an
error status is returned.

3.4 Query Semaphore

The state of a semaphore can be queried with the NtQuerySemaphore function:

NTSTATUS

NtQuerySemaphore (
 IN HANDLE SemaphoreHandle,
 IN SEMAPHORE_INFORMATION_CLASS SemaphoreInformationClass,
 OUT PVOID SemaphoreInformation,
 IN ULONG SemaphoreInformationLength,
 OUT PULONG ReturnLength OPTIONAL

);
Parameters:

SemaphoreHandle - An open handle to a semaphore object.

SemaphoreInformationClass - The semaphore information class about which to

retrieve information.

SemaphoreInformation - A pointer to a buffer which receives the specified

information. The format and content of the buffer depend on the specified
semaphore class.

SemaphoreInformation Format by Information Class:

SemaphoreBasicInformation - Data type is
SEMAPHORE_BASIC_INFORMATION.

SEMAPHORE_BASIC_INFORMATION Structure

Windows NT Event/Semaphore Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LONG CurrentCount - The current count of the semaphore.

LONG MaximumCount - The maximum count that may be obtained

by the semaphore.

SemaphoreInformationLength - Specifies the length in bytes of the semaphore

information buffer.

ReturnLength - An optional pointer which, if specified, receives the number of

bytes placed in the semaphore information buffer.

This function provides the capability to determine the state and granted access of a
semaphore object

4.0 Delay Execution

The execution of the current thread can be delayed for a specified interval of time

with the NtDelayExecution function:

NTSTATUS
NtDelayExecution (

 IN BOOLEAN Alertable,
 IN PTIME DelayInterval
);

Parameters:

Alertable - A boolean value that specifies whether the wait is alertable.

DelayInterval - The absolute or relative time over which the wait is to occur.

The NtDelayExecution function causes the current thread to enter a waiting state
until the specified interval of time has passed. If Alertable is specified as TRUE, the
wait service completes and a condition of STATUS_ALERTED is raised. If an APC is

delivered while the thread is waiting alertable, the APC is invoked and the wait
operation re-executed.

Revision History:

Original Draft 1.0, January 5, 1989

Revision 1.2, March 12, 1989

Windows NT Event/Semaphore Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Removed Muxwait object and Mutex object.

Revision 1.3, May 11, 1989

 1. Added wait for multiple objects.

 2. Added NtDelayExecution

Revision 1.4, August 8, 1989

 1. Make return parameters for PreviousState and CurrentState optional.

Revision 1.5, October 23, 1989

 1. Changed EventName/SemaphoreName in OBJA structure to ObjectName.

 2. Added description of notification and synchronization events.

 3. Changed PreviousState to return a count that indicates the number of

times the event was set since the last reset.

 4. Added the EventType to the query event call.

 5. Changed wait services to describe the abandoned state.

Revision 1.6, December 1, 1989

 1. Changed desciption of NtCreateSemaphore, NtCreateEvent,
NtOpenSemaphore and NtOpenEvent to use OBJECT_ATTRIBUTES and
reference Object Management Specification for detials.

 2. Changed PULONG to PLONG for PreviousState argument in NtSetEvent,
NtResetEvent, and NtPulseEvent.

Windows NT Event/Semaphore Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision 1.7, January 3, 1990

 1. Clarified the behavior of sychronzation events and the state of the event

count.

 2. Changed desired access flags for NtCreateEvent, NtOpenEvent,

NtCreateSemaphore, and NtOpenSemaphore.

 3. Removed NtWait description. This is now in the Object Management
Specification.

Revision 1.8, January 23, 1990

 1. Changed NtReleaseSemaphore to return a failure if the ReleaseCount is
greater than the maximum count.

 2. Changed NtReleaseSemaphore to require the ReleaseCount to be greater
than 0.

