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Abstract: Quantum digital signatures (QDSs) promise information-theoretic security against
repudiation and forgery of messages. Compared with currently existing three-party QDS
protocols, multiparty protocols have unique advantages in the practical case of more than two
receivers when sending a mass message. However, complex security analysis, numerous quantum
channels and low data utilization efficiency make it intractable to expand three-party to multiparty
scenario. Here, based on six-state non-orthogonal encoding protocol, we propose an effective
multiparty QDS framework to overcome these difficulties. The number of quantum channels
in our protocol only linearly depends on the number of users. The post-matching method is
introduced to enhance data utilization efficiency and make it linearly scale with the probability of
detection events even for five-party scenario. Our work compensates for the absence of practical
multiparty protocols, which paves the way for future QDS networks.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Digital signature can verify the authenticity of digital messages and has been widely applied
in e-mail, e-commerce and software distribution [1]. As e-commerce becomes more and
more significant in modern society, the need of unconditionally secure digital signatures
against hacking attacks has arisen. Classical digital signatures offer security based on the
computational complexity of mathematical problems [2–5]. However, the task of rapidly solving
these mathematical problems becomes feasible when a quantum computer is available [6–10].
Fortunately, quantum digital signatures (QDSs) can offer information-theoretic security relying
on quantum mechanics against adversaries who are supposed to have unbounded ability allowed
by physics.

The first QDS protocol was proposed in 2001 [11], but there are some challenging requirements,
such as secure quantum channels and long-term quantum memory. After that, the requirement
of quantum memory was removed by converting the quantum signatures to classic information
through quantum measurements, which makes QDS closer to real implementation [12–16].
Whereas, the security analyses of early protocols still rely on secure quantum channels where
there is no eavesdropping. To further improve practicality, two independent QDS protocols
without secure quantum channels were proposed and proved to be secure, which are based
on non-orthogonal encoding [17] and orthogonal encoding [18], respectively. After these
two protocols, numerous excellent achievements of QDS have been made theoretically and
experimentally [19–35]. Protocols based on orthogonal encoding [18,19,33] need additional
symmetrization step which results in extra channels. Recently, drawing on the experience of the
four-state Scarani-Acin-Ribordy-Gisin 2004 quantum key distribution (SARG04 QKD) protocol
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[36–41], a post-matching QDS protocol has been proposed based on non-orthogonal encoding
[42]. It does not require additional symmetrization step and also achieves better performance
than the original protocol [17].

Current QDS protocols mostly focus on three-party communication since the protocol involving
more than two recipients will raise three major concerns. The first one is the increased number
of quantum communication channels [43]. When extending orthogonal encoding protocol to
multiparty scenarios, each pair of participants requires a quantum communication channel to
symmetrize their secret keys. The M-party orthogonal encoding protocol requires M(M − 1)/2
quantum channels. As M increases, it becomes more complex and less practical to implement.
The second one is the poor data utilization efficiency leading to low signature rate if we expand the
original non-orthogonal encoding protocol to multiparty scenarios. This is because the original
non-orthogonal encoding protocol only consider coincidence detection events as valid events.
For M-party protocol, it requires all detectors of M − 1 recipients click. Let η be the probability
that one recipient detector clicks. When the signer sends N quantum states to recipients, there
are only NηM−1 valid events, which is far from enough to perform multiparty protocols. Besides,
complex security analysis is also a difficulty to be overcome because there exists a situation
where some participants collude with each other to deceive others [44]. Although the security
analysis of multi-party quantum digital signature schemes based on orthogonal encoding has
made progress [45,46], it does not give an exact example and concrete simulation results.

In this paper, we propose a six-state three-party QDS protocol to enhance performance of
signature rate and stability with the help of its higher bit error rate threshold compared with [42].
Furthermore, considering that three-photon or even four-photon components of six-state protocol
can be used for the secure key, we extend this six-state protocol to four-party and five-party
scenarios and overcome difficulties above, as shown in Fig. 1. According to our multiparty
QDS framework, we simulate the performance of our three-party, four-party and five-party QDS
and give a comparison among them. It is the first practical multiparty QDS framework and we
provide security analysis.

Fig. 1. Schematic diagrams of three-party, four-party and five-party protocol. The red line
represents insecure quantum channel and the blue dash line is authenticated classical channel.
θ is the angle between Alice-Bob and Alice-Charlie. a. Three-party protocol with θ = π

2 . b.
Three-party protocol with θ = 2π

3 . c. Four-party protocol. d. Five-party protocol.
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2. Protocol description

Let us start by the common notation. The ‘signer’ Alice assigns any one of recipients as
‘authenticator’ and other recipients become ‘verifiers’ automatically. For simplicity, we always
let Bob become the authenticator and other recipients become verifiers automatically. Note that
in this article we consider the symmetric situation where the fiber lengths between Alice and any
one of recipients we mentioned in the following are equal. We will introduce detailed security
analysis in Methods. In Table 1, we give a concise description of the framework.

Table 1. Brief description of M-party

Key generation Alice prepares M − 1 different quantum state sequences and sends them to
M − 1 recipients respectively. All recipients measure quantum states they
received in the X, Y or Z basis at random and announce all click events. All
participants discard no-click data and keep click data to form their own
strings. After that, they perform post-matching process and encode their
processed data strings by our rule.

Estimation Alice informs any verifier to randomly select a certain proportion of strings
as test bits. The verifier announces the location of test bits and asks Alice to
publicly announce the data information of test bits. The recipients estimate
the mismatching rate of conclusive results between their own string and
Alice’s string.

Messaging To sign one-bit message, Alice sends her own untested data string to Bob.
Whether Bob accepts it depends on Bob’s mismatching rate of conclusive
results. If Bob accepts, Bob forwards it to all verifiers respectively. Whether
verifiers accept it depends on their own mismatching rate. All participants
negotiate whether aborting the protocol according to the majority voting
principle.

Three-party protocol. We take three-participant scenario as an example and describe all
processes in detail. Alice chooses Bob as authenticator and Charlie becomes verifier. In our
protocol, there are insecure quantum channels connecting Alice with Bob and Alice with Charlie.
Moreover, there are authenticated classical channels between any two of three participants. There
are six quantum states: |+x⟩, |−x⟩, |+y⟩, |−y⟩, |+z⟩, |−z⟩. |±x⟩ are the eigenstates of Pauli
X operator. |±y⟩ are the eigenstates of Pauli Y operator. |±z⟩ are the eigenstates of Pauli Z
operator. These six states can be arranged into the 12 sets: {|ω1x⟩, |ω2y⟩}, {|ω3y⟩, |ω4z⟩} and
{|ω5z⟩, |ω6x⟩}, where ω1, ω2, ω3, ω4, ω5, ω6 ∈ {+,−}. The first state in each set is encoded
with bit value 0 and the second is encoded with bit value 1.

There are three steps in our QDS protocol: key generation, estimation and messaging.
In the key generation step, Alice uses phase-randomized weak coherent-state source to prepare

the six states. For each possible message m = 0 and m = 1, Alice prepares two different unrelated
sequences of quantum states AB,m and AC,m with length N respectively. Each state is randomly
selected from the six states with the same probability by Alice. We denote the light intensity as λ
(λ ∈ {µ, ν, 0}). Each quantum state is prepared with the intensity µ, ν or 0 and the corresponding
possibility pµ, pν , p0 respectively. Alice sends sequences AB,0, AB,1 to Bob and AC,0, AC,1 to
Charlie through insecure quantum channels. Bob and Charlie receive the sequences and then
measure each quantum state in the X, Y or Z basis at random. Bob (Charlie) announces all
the click events in AB,m (AC,m) through authenticated classical channel, denoted as SB,m (SC,m).
Afterwards, Alice discards no-click data and keeps click data of length n to form strings SAB,m
and SAC,m. Alice publicly announces intensity information of all pulses and all three participants
divide their remaining data strings into µ-string, ν-string and 0-string according to the intensity
information. For instance, Bob divides SB,m into SµB,m, SνB,m and S0

B,m according to the public
intensity information.

The three participants perform post-matching method [42]. Alice takes the order of quantum
states in SλAB,m as a reference and changes the order of SλAC,m to make it same as the order of
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SλAB,m. Alice requests Charlie to change the order of SλC,m into the same order. For instance,
if SAB,m = {s1

AB,m, s2
AB,m, s3

AB,m, s4
AB,m, s5

AB,m, s6
AB,m} = {|+x⟩, |−x⟩, |+y⟩, |−y⟩, |+z⟩, |−z⟩},

SAC,m = {s1
AC,m, s2

AC,m, s3
AC,m, s4

AC,m, s5
AC,m, s6

AC,m} = {|+y⟩, |+z⟩, |−x⟩, |−y⟩, |−z⟩, |+x⟩}, Alice
changes initial SAC,m into S′

AC,m, where S′
AC,m = {s6

AC,m, s3
AC,m, s1

AC,m, s4
AC,m, s2

AC,m, s5
AC,m}. She also

informs Charlie to change the order of elements in SC,m into S′
C,m, where S′

C,m = {s6
C,m, s3

C,m, s1
C,m,

s4
C,m, s2

C,m, s5
C,m}. Note that SC,m is the measurement result of SAC,m, so S′

C,m is the measurement
result of S′

AC,m. As a result, although Alice sends two different quantum-state sequences, after
post-matching process, two identical sequences SAB,m and S′

AC,m are obtained by Bob and Charlie
respectively. We illustrate our rule to generate logic bits as follows. For each quantum state
sent, Alice randomly chooses one of 12 sets so that the state she sent is one of the two states
in the set. Then she assigns the quantum state to this set. When the measurement outcome is
orthogonal to any quantum state of the assigned set, the receiver gets a conclusive result encoded
with logic bit 0 (the first state) or logic bit 1 (the second state). Otherwise, the receiver gets an
inconclusive result denoted as ’⊥’. They do not announce whether the results are conclusive or
inconclusive. Following the rule, all of three participants encode their data strings with Kλ

A,m,
Kλ

B,m and Kλ
C,m respectively. The function of binary logic is to quantify the mismatching rate

of conclusive results between Alice’s binary encoded data string and each recipient’s binary
encoded data string in the estimation step, which is used in the later security analysis.

Here is the example of binary encoding process. The recipients randomly choose X, Y or Z
basis to measure each quantum state Alice sent. Alice should publicly announce which of the 12
sets she picked for each state she sent. The set Alice picked should include the state she sent. The
recipients will get a conclusive result if any one of the two states in the set is the eigenstate of the
basis the recipient chose to measure. For example, Alice sends the state |+x⟩. She will assign it
to any one of {|+x⟩, |+y⟩}, {|+x⟩, |−y⟩}, {|+z⟩, |+x⟩} and {|−z⟩, |+x⟩}. When she assigns it to
{|+x⟩, |+y⟩} and Bob’s measurement outcome is |−y⟩ (|−x⟩), Bob will get a conclusive result
with logic bit value 0 (1).

In the estimation step, we use superscript c to denote conclusive results, u to denote untested
bits, t to denote test bits. The three participants estimate the bit error rate of single-photon pair
components with decoy-state method in their µ strings. Alice announces the information of
intensity λ = ν and λ = 0 publicly. Alice informs Charlie to randomly select a certain proportion,
denoted as t, of µ strings as test bits. Charlie announces the location of test bits and asks Alice to
publicly announce the data information of test bits. Denote the mismatching rate of conclusive
results between Kt

A,m and Kt
B,m (between Kt

A,m and Kt
C,m) as Ect

B (Ect
C ). Moreover, Bob and Charlie

calculate the proportion of conclusive results in KB,m and KC,m respectively, denoted as Pc
B and Pc

C.
If either of them deviates greatly from the ideal value 1

6 , they also abort the protocol. Afterwards,
all of them throw away the test bits and conserve the untested bits of µ strings with remaining
length (1 − t)nµ.

In the messaging step, to sign one-bit message m, Alice sends
{︂
m, Ku

A,m

}︂
to Bob. Bob checks

the mismatching rate of conclusive results Ecu
B between Ku

A,m and Ku
B,m. If Ecu

B ≤ Ta (Ta is the
authentication security threshold), Bob accepts the message. Otherwise, he rejects the message
and aborts the protocol. When Bob accepts the message from Alice, he forwards

{︂
m, Ku

A,m

}︂
to verifier Charlie. After that, Charlie checks the mismatching rate of conclusive results Ecu

C
between Ku

A,m and Ku
C,m. If Ecu

C ≤ Tv (Tv is the verification security threshold), Charlie accepts
the message. Otherwise, Charlie rejects the message and aborts the protocol.

We define the signature rate as R := 1
2N , where 2N is the minimum number of pulses required

to securely sign a one-bit message. We define that it is secure enough to sign a 1-bit message
when the robustness εrob, the probability of successful forgery εfor, the probability of successful
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Fig. 2. Comparison of performance between our three-party protocol and four-state protocol
[42]. The detection efficiency is 93%. The dark counting rate is 1 × 10−7. The basis
misalignment rate is 0.50%. The loss coefficient of fiber is 0.16 dB/km. As the fiber length
increases, the superiority of our protocol becomes more apparent. The signature rate of our
protocol is at least 400% higher than that of [42] in this case.

repudiation εrep, the failure probability of the Chernoff bound ϵ1 and the failure probability of
random sampling without replacement ϵ2 do not exceed their thresholds respectively.

Fig. 3. Comparison of performance between our three-party protocol and orthogonal
encoding protocol [18]. We simulate two protocols under the same experimental parameters.
The signature rate of our protocol is lower at short distance. However, it decays more slowly
than orthogonal encoding protocol and shows better performance especially at long distance.
In this case, our protocol has a longer transmission distance.
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As shown in Fig. 2, we simulate the four-state protocol of [42] to compare it with our six-state
protocol. The performance of our protocol is better than that of [42]. For example, when the
fiber length is 150 km, the original four-state protocol requires about 2.93 × 1010 pulses to
sign a one-bit message. However, under the same conditions our six-state protocol only needs
about 5.85 × 109 pulses. When the fiber length is 150 km, the signature rate of our protocol
is approximately 500% higher than four-state . Moreover, we also simulate the performance
of orthogonal encoding based protocol with symmetrization step in [18] to compare with our
protocol as shown in Fig. 3. We denote the angle between Alice-Bob and Alice-Charlie as θ.
Denote the distance between Alice and Bob (Charlie) as DAB (DAC) and the distance between Bob
and Charlie as DBC. For a symmetric case, DAB = DAC and DBC = 2DAB sin θ/2. DBC increases
as θ gets larger. When θ is close to π , the transmission distance of QKD (DBC) increases much
faster than DAB. Detailed information can be found in Ref. [42]. Define the effective signature
rate as Reff := max{ 1

2N , RQKD
6L }, where L is the length of generated key and RQKD is the secret key

rate of QKD. RQKD is simulated by the key rate formula of [47]. We simulate three cases of θ = π,
θ = 2π

3 and θ = π
2 . Our protocol has a longer transmission distance and greater performance of

signature rate especially at long distance in these cases where the signature rate of our protocol
decays more slowly. We also simulate our protocol’s performance under different dark counting
rates and different basis misalignment rates as shown in Fig. 4 and Fig. 5 respectively. From
two figures, we can see that our protocol shows obviously high error rate tolerance and stability
against noise.

Fig. 4. Optimal signature rate of three-party protocol with the same dark counting rate
pd = 1 × 10−7 under different basis misalignment rate.

Four-party QDS protocol. In our four-party protocol, there are ‘signer’ Alice, ‘authenticator’
Bob, ‘verifier’ Charlie and ‘verifier’ David. Their positions are shown in Fig. 1(c). The operation
among Alice, Bob and Charlie are the same as three-party protocol, which we will not describe
in detail here. We focus on the difference due to the new participant ‘verifier’ David instead.

For each possible message m = 0 and m = 1, following the rule of generating logic bits, David
encodes his data strings with Kλ

D,m in the key generation step.
In the estimation step, the four participants estimate the bit error rate of triple-photon

components with decoy-state method in their µ strings. Alice announces all information of
intensity λ = ν and λ = 0. Then Alice informs any one of verifiers to randomly select a proportion
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Fig. 5. Optimal signature rate of three-party protocol with the same basis misalignment
rate ed = 0.5% under different dark counting rates.

of µ strings as test bits. All verifiers announce the location of their test bits respectively and
request Alice to announce the data information of test bits publicly. Denote the mismatching rate
of conclusive results between Kt

A,m and Kt
B,m as Ect

B , the mismatching rate of conclusive results
between Kt

A,m and Kt
C,m as Ect

C and the mismatching rate of conclusive results between Kt
A,m and

Kt
D,m as Ect

D . Moreover, Bob, Charlie and David calculate the proportion of conclusive results in
KB,m, KC,m and KD,m respectively, denoted as Pc

B, Pc
C and Pc

D.
To sign one-bit message m, Alice sends

{︂
m, Ku

A,m

}︂
to Bob. Bob checks the mismatching

rate of conclusive results Ecu
B between Ku

A,m and Ku
B,m. If Ecu

B ≤ Ta, Bob accepts the message.
Otherwise, he rejects the message and aborts the protocol. When Bob accepts the message from
Alice, he forwards

{︂
m, Ku

A,m

}︂
to Charlie and David respectively. After that, Charlie checks the

mismatching rate of conclusive results Ecu
C between Ku

A,m and Ku
C,m. If Ecu

C ≤ TCv (TCv is the
verification security threshold of Charlie), Charlie accepts the message. Otherwise, Charlie
rejects the message. David checks the mismatching rate of conclusive results Ecu

D between Ku
A,m

and Ku
D,m. If Ecu

D ≤ TDv (TDv is the verification security threshold of David), David accepts the
message. Otherwise, David rejects the message. Either of Charlie and David rejects the message
means that the protocol will be aborted. All participants negotiate whether aborting the protocol
or not according to the majority voting principle.

Five-party QDS protocol. When it comes to our five-party protocol, there are five participants
‘signer’ Alice, ‘authenticator’ Bob, ‘verifier ’ Charlie, ‘verifier’ David and ‘verifier’ Emery. Their
positions are shown in Fig. 1(d). The processes among Alice, Bob, Charlie and David are the
same as the four-party protocol. We only focus on the operation involving Emery here.

In the key generation step, Emery encodes his data strings with Kλ
E,m following the process as

we described above.
In the estimation step, the five participants estimate the bit error rate of four-photon component

with decoy-state method in their µ strings. Alice announces the information of intensity λ = ν
and λ = 0. Alice informs any one verifier to randomly select a certain proportion of µ strings
as test bits. The participants estimate their mismatch rate of conclusive results. Denote the
mismatching rate of conclusive results between Kt

A,m and Kt
E,m as Ect

E . Moreover, Emery calculates
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the proportion of conclusive results in KE,m, denoted as Pc
E. If any one of Bob, Charlie, David and

Emery deviates greatly from the ideal value 1
6 , they abort the protocol. Afterwards, all of them

throw away the test bits and keep the untested bits of µ strings with remaining length (1 − t)nµ.
In the messaging step, Alice sends

{︂
m, Ku

A,m

}︂
to Bob in order to sign one-bit message m. Bob

checks Ecu
B . If Ecu

B ≤ Ta, Bob accepts the message. Otherwise, he rejects the message and aborts
the protocol. When Bob accepts the message from Alice, he forwards

{︂
m, Ku

A,m

}︂
to Charlie,

David and Emery respectively. Emery checks the mismatching rate of conclusive results Ecu
E

between Ku
A,m and Ku

E,m. If Ecu
E ≤ TEv (TEv is the verification security threshold of Emery), Emery

accepts the message. Otherwise, Emery rejects. All participants negotiate whether aborting the
protocol or not according to the majority voting principle.

3. Security analysis

Our security analysis follows [17] and [42]. We build the framework for M-party (M=3, 4, 5)
protocol about three security criteria: robustness, security against forgery and security against
repudiation. Here, we apply majority voting principle to solve dispute. For four-party protocol,
there are at most one dishonest participant. Any two of participants making the wrong decision
leads to successful attack. For five-party protocol, we should consider the colluding attack where
there are two dishonest participants. We can assume Emery is a fixed dishonest player and he
will collude with the other dishonest participant (Alice or Bob). Emery always unconditionally
supports his partner. In other words, Charlie and David must make the same correct decision.
This situation is equivalent to the four-party scenario above where there exists only one dishonest
participant among Alice, Bob, Charlie and David.

The upper bound and lower bound of expected value of parameter a can be given by a variant

of Chernoff bound [48]: a∗ = a + β +
√︁

2βa + β2 and a∗ = a −
β
2 −

√︂
2βa + β2

4 where β = ln 1
ε1

and ϵ1 is the failure probability of the Chernoff bound. We use k to denote k-photon component,
where k = M − 1.

(1) Robustness Robustness (εrob) represents the probability that the protocol is aborted
when the antagonist is inactive. In messaging step, Bob does not accept the message if Ecu

B >Ta.
We can quantify robustness by random sampling without replacement theorem [48] in finite
sample case.

(2) Security against forgery Forgery attack means Bob wishes that more than half of
verifiers would accept the forwarded message forged by Bob {m, KBF}. In this case, Bob needs
to obtain as much information as he can about quantum states that all verifiers receive, like an
eavesdropper in SARG04 QKD protocol [21,36,38,41].

All positions of recipients are equal. Without loss of generality, we first consider the probability
that Charlie is deceived by Bob. We exploit the decoy state method [49–52] to estimate the bit
error rate eb of k-photon component.

Considering the process where Alice sends pulses to all recipients, we have

scµ∗

C1 ≥
pµe−µ

ν(µ − ν)
(µ2eν

nc∗
Cν
pν

− ν2eµ
nc∗

Cµ

pµ
+ (ν2 − µ2)

nc∗
C0
p0

), (1)

where scµ∗

C1 is the number of conclusive single-photon events in Charlie’s µ string.

sµ
∗

Q1 ≥
pµe−µ

ν(µ − ν)
(µ2eν

n∗Qν
pν

− ν2eµ
n∗Qµ

pµ
+ (ν2 − µ2)

n∗Q0

p0
), (2)

sµ
∗

Q1 ≤
pµµe−µ

ν
(eν

n∗Qν
pν

−
n∗Q0

p0
), (3)
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where Q ∈ Ω and

Ω =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{B} if M=3,
{B, D} if M=4,
{B, D, E} if M=5,

(4)

and sµ
∗

Q1 is the number of single-photon events in Q’s µ strings. Therefore, we have

scµ∗

Ck ≥ scµ∗

C1 ×
∏︂
Q∈Ω

sµ
∗

Q1

n∗Qµ

, (5)

where scµ∗

Ck is the number of events that all recipients receive a single-photon in µ string and
Charlie has a conclusive result simultaneously. For example, when it comes to four-party,

scµ∗

C3 ≥ scµ∗

C1 ×
sµ

∗

B1
n∗Bµ

×
sµ

∗

D1
n∗Dµ

.
We also have

tcµ
∗

C1 ≤
pµµe−µ

ν
(eν

mc∗
Cν

pν
−

nc∗
C0

2p0
), (6)

and
where tcµ

∗

C1 is the number of single-photon error events of Charlie’s conclusive results in µ
string with respect to Alice. We can get

tcµ
∗

Ck ≤ tcµ
∗

C1 ×
∏︂
Q∈Ω

sµ
∗

Q1

n∗Qµ

(7)

where tcµ
∗

Ck is the number of events that all recipients receive a single-photon in µ string, Charlie
has a conclusive result and his classic bit mismatches with Alice’s.

Therefore, the bit error rate eb can be given by eb = tcµ
∗

Ck /s
cµ∗

Ck .
The relationship between phase error rate ep and bit error rate eb [17] in six-state SARG04

protocol is

ep =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4−

√
2

4 + 3
2
√

2
eb if M=3,

1
4 +

3
4eb if M=4,

min{xeb + f (x)},∀x if M=5,
(8)

where f (x) = 6−4x+
√

6−12
√

2x+16x2

12 .
E∗

BFk can be given by H(E∗
BFk) = 1 − IB = 1 − H(ep |eb), where H(ep |eb) is the conditional

Shannon entropy function, IB is mutual information provided by [17] and E∗
BFk is the expected

value of minimum mismatching rate of conclusive results of the k-photon component between
correct Ku

A,m and forged Ku
BF,m.

We employ Chernoff Bound [53] and the probability of successful forgery (εfor) can be given
by

εfor = exp

[︄
−
(E∗

BFk − Tvk)
2

2E∗
BFk

ncu
k

]︄
, (9)

where Tvk = Tvncu/ncu
k is the error rate threshold of k-photon component, ncu = (1 − t)nc

µ is the
number of conclusive results in Ku

C,m and ncu
k = (1 − t)scµ

Ck is the number of k-photon component
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in Ku
C,m. Note that ϵfor is determined by the probability of deceiving the most vulnerable recipient.

Therefore,

Tv =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
TCv if M=3,
min{TCv, TDv} if M=4,
min{TCv, TDv, TEv} if M=5.

(10)

(3) Security against repudiation Alice repudiates successfully when Bob accepts the
message and more than half of the verifiers refuse to accept it. The probability of repudiation
εrep can be given by

εrep = exp

[︄
−

(︁
A − Pc

BTa
)︁2

2A
nu

]︄
. (11)

A is the solution of the following equation:[︂
Pc

CTv − Pc
C

(︂
∆

cu

ncu +
A
Pc

B

)︂]︂2

3Pc
C

(︂
∆

cu

ncu +
A
Pc

B

)︂ =
(A − Pc

BTa)
2

2A
, (12)

with Pc
BTa<A<Pc

B

(︂
Tv −

∆
cu

ncu

)︂
. ∆

cu
can be given by

∆
cu
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆

cu
BC if M=3,

max{∆
cu
BC,∆

cu
BD} if M=4,

max{∆
cu
BC,∆

cu
BD,∆

cu
BE} if M=5,

(13)

where ∆
cu
BC is the relative Hamming distance between Ecu

B and Ecu
C , ∆

cu
BD is the relative Hamming

distance between Ecu
B and Ecu

D , ∆
cu
BE is the relative Hamming distance between Ecu

B and Ecu
E .

Therefore, the total security can be given by

εtot =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
11ϵ1 + ϵ2 + εrob + εfor + εrep if M=3,
17ϵ1 + ϵ2 + εrob + εfor + εrep if M=4,
23ϵ1 + ϵ2 + εrob + εfor + εrep if M=5,

(14)

where ϵ1 is the failure probability of the Chernoff bound and ϵ2 is the failure probability of
random sampling without replacement.

In our simulation, we set the security bounds as εtot ≤ 10−9, εfor ≤ 10−10, εrob ≤ 10−10,
εrep ≤ 10−10 and ε1 = ε2.

Note that as shown in Fig. 6, expanding the QDS framework to an increasing number of users
implies that the signature rate R decreases more rapidly than just linearly as the number of parties
increases. That is because, for M-party protocol, only the M − 1 photon component can be
considered to be secure when we consider security against forgery. That means the addition of a
new user requires an extra single photon reducing the efficiency which makes signature rate get
lower as we pointed in Eq. (5). Additionally, the relationships between phase error rate ep and bit
error rate eb of M − 1 photon component in six-state SARG04 protocol are different as shown in
Eq. (8). That will also influence the signature rate of multiparty QDS.

Furthermore, the increase of system loss and the decrease of detection efficiencies will both
lead to the decrease of valid detection events when sending the same number of pulses. That
means the statistical fluctuation will increase resulting in the increase of the probability of
successful repudiation and forgery. Moreover, the enhancement of security constraint also results
in the statistical fluctuation increasing. Therefore, more pulses are required to keep the protocol
safe, i.e., the signature rate will be lower.
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Fig. 6. The performance of three-party, four-party and five-party protocol under the same
basis misalignment rate ed = 0.1%. With the help of post-matching method, extending
three-party to four-party or even five-party scenario is feasible because our data utilization
efficiency is highly improved.

4. Conclusion

In summary, we have presented a practical QDS framework that consists of multiple participants.
In our three-party protocol, signature rate, secure transmission distance and error tolerance
achieve better performance because of higher error rate threshold. Additionally, as shown in
Fig. 6, our protocol can be extended to multiparty scenarios with great performance. In our
simulation, when the basis misalignment rate ed = 0.1% and dark counting rate pd = 1 × 10−7,
our three-party, four-party and five-party QDS protocols can reach the transmission distance of
265 km, 220 km and 156 km respectively. When the fiber length is 150 km, the signature rates of
three-party, four-party and five-party are 5.1 × 10−10, 8.3 × 10−11 and 5.6 × 10−13 respectively.
As shown in Fig. 4, the signature rate does not decrease dramatically as ed increases, showing
the great fault tolerance. For example, when fiber length is 150 km, the signature rates are
2.7 × 10−10, 8.5 × 10−11 and 2.7 × 10−11 under ed = 0.25%, 0.50% and 0.75% respectively.

The insurmountable barrier for original non-orthogonal encoding protocol to realize multiparty
QDS protocol is low data utilization efficiency due to the requirement of coincidence detection.
But our M-party protocol perfectly overcome this barrier because we can highly increase data
utilization efficiency from O(ηM−1) to O(η) with post-matching method, resulting in pronounced
improvement of signature rate. Compared with orthogonal encoding protocol, our multiparty
protocols are concise and maneuverable since our M-party protocol only needs M − 1 quantum
channels as we shown in Fig. 1. The requirement of fewer quantum channels is a noticeable
advantage of our QDS framework.

Also, in our work, we have presented security analysis of generalized multiparty QDS
framework. These multiparty QDS protocols promise robustness, security against forgery and
security against repudiation. We also solved the complex problem of colluding attack existing in
the five-party scenario which never happens in three-party QDS by majority voting. This work
provides specific ideas for practical multiparty QDS protocol. It will be interesting to apply ideas
of our QDS framework to realize large-scale QDS networks in the near future.
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