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Summary

Memory errors are persistent threats to computer systems. Attacks exploiting mem-
ory errors have resulted in severe damage in real-world programs. Every year more
than one thousand of memory errors are detected and reported. At the same time, ex-
ploit mechanisms are rapidly evolving, enabling attacks to bypass known protections.
To prevent the huge damage from memory errors, it is crucial for us to detect them in
advance and predict their evolving trend.

In this thesis, we use systematic methods to detect memory errors and discover new
attack mechanisms. We propose and implement three novel methods. In the first work,
we detect memory errors shown in the privilege-based isolation. In particular, we iden-
tify the arbitrary memory access vulnerability, where the unexpected memory access
can cross different isolated partitions. We build a systematic way to detect the arbitrary
memory access code and report its severity. Then we look into new exploit mecha-
nisms that can bypass most of the known defense mechanisms — the data-oriented attack.
Specifically, we study the consequence of data flow re-construction, where original data
flows in a program are split into small pieces and are reconnected by memory errors.
We propose a novel method, called data-flow stitching, to connect disjoint data flows
to either leak information or gain extra privileges. Data-flow stitching significantly en-
larges the capability of data-oriented attacks. Finally, we explore the expressiveness of
data-oriented attacks regarding the ability to perform arbitrary computations. We pro-
pose a new exploit construction technique, called data-oriented programming (DOP),
to selectively stitch basic data-flow gadgets for a desired purpose. With DOP, we build
Turing-complete data-oriented attacks resulted from common memory errors, demon-

strating the strong expressiveness.
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Chapter 1

Introduction

Memory errors are classical problems in computer system security. At a specific ex-
ecution time, one particular memory operation should only access a subset of the full
memory space by design. However, memory errors lead to unexpected memory accesses
regarding the location or the time. For example, a process with buffer overflow [61,132]
can visit the memory beyond the boundary of the expected buffer; a process with use-
after-free [16] can access a freed variable. Under memory errors, attackers can cause
predictable and controllable results with elaborated inputs, like control of a remote sys-
tem (e.g., through Ghost [69]), or leakage of the sensitive information (e.g., through
Heartbleed [13]). Many exploit methods have been developed to build reliable attacks,
such as code injection attack [132], return-to-libc attack [125] and return-oriented pro-
gramming (ROP) [149].

Low-level programming languages, like C/C++, provide a large breeding ground for
memory errors. These languages contain a set of programming APIs for developers to
access the low-level memory, like memory allocation (e.g., malloc in C) and release
(e.g., free in C). As programmers can optimize the memory usage for better perfor-
mance, these languages get wide adoption during the real-world program development.
Many popular systems, including browsers (e.g., Chrome and Internet Explorer) and
operating systems (e.g., Linux and Windows), are developed in C/C++. However, the
freedom of the low-level memory access is a double-edged sword: convenient APIs
help developers program efficiently, but any programming mistakes can lead to severe
memory errors. For example, if the program inadvertently dereferences memory with

a freed object pointer, it leads to a use-after-free memory error. As the code base is



getting larger, it is more and more difficult for developers to prevent memory errors.

To mitigate the damage by memory errors, a wide range of detection and defense
mechanisms have been proposed. Memory safety is designed to provide safe memory
access. It tries to prevent memory errors in the first place. Various implementations
of memory safety [17, 18, 105, 109, 113, 122-124, 141] bring type systems to unsafe
languages or check the memory access bound and the life-cycle at run-time. However,
these implementations often suffer from a high performance overhead [105, 122-124],
or only provide partial protection of control data [109, 113], rendering the current so-
lutions impractical. As a second-line defense, exploit prevention mechanisms are de-
veloped to prevent a successful exploit, even if attackers can corrupt the memory with
errors. Memory isolation [34,42,106,138,168] aims to protect high-privileged resources
by separating unprivileged resources and high-privileged resources into different parti-
tions. Data execution prevention (DEP) [21] removes memory regions that are both
executable and writable, so that attackers cannot inject any new code into the vulnera-
ble program. It effectively prevents pure code injection attacks. Address space layout
randomization (ASLR) [20, 26, 30, 32,92, 100, 167] makes the program address highly
unpredictable. Attackers have no knowledge about the target to divert the control flow,
and thus likely fail to build a successful attack. Control flow integrity (CFI) [15] draws
on the program’s benign control flow graph (CFG) to define all legitimate control flow
transfer targets and requires the program execution to conform to the CFG. It limits
every indirect control flow transfer to one of the legitimate targets. Data flow integrity
(DFI) [50,154] only allows memory updates by instructions in the legitimate instruction
set. More efforts [58,63,82,129, 133, 147,158,160, 170, 173,178, 180, 182] have been
spent to improve the security and practical viability of memory error solutions. These

methods significantly raise the bar of successful memory error exploits.

However, exploit methods evolve rapidly to bypass public-known defenses. Even
known memory errors can cause significant threats with new exploits. For example,
code reuse attacks, like return-to-libc and ROP, can circumvent the DEP defense. In-
formation leakage [13, 148] and heap spray [156, 161] are leveraged to bypass defense
mechanisms based on the address randomization. The arms race between exploits and
defenses will not end in the near future as attackers always seek new ways for success-

ful exploits. Defenders need to deploy a proactive defense to prevent new attacks. This



requires researchers to understand the trend of the exploit development and predict the
next possible methods. Currently one of the most advanced defenses is control flow
integrity (CFI), which tries to prevent control flow hijacking attacks. Researchers have
spent a lot of efforts to make CFI efficient and effective so that they can be deployed in
real world systems [121, 160]. But the memory error is still dangerous if new exploits
do not modify any control data (like non-control data attack [56]). Currently our knowl-
edge of attacks on non-control data is limited. However several recent attacks [13,175]
have demonstrated their severe damage. It is urgent for us to systematically understand
the capability of non-control data attacks so that we can deploy defense mechanisms
in advance. In this thesis, we aim to answer the following research questions: How to
systematically detect unexpected memory accesses, which are the sources of memory
errors? What are possible methods to build non-control data attacks (or data-oriented
attacks), beyond the simple non-control data corruption? What is the computational
expressiveness of data-oriented attacks? Can they be Turing-complete, as control-flow

hijacking attacks (like return-to-libc and ROP)?

Thesis Statement. We systematically detect memory errors where attackers control
the memory access. We propose and build novel methods to discover and analyze ex-

pressive data-oriented attacks.

Our Approach. We propose systematic analysis to understand the program’s memory
access behavior, and identify memory errors and exploits. We first detect memory er-
rors exposed during the privilege-based isolation. Privilege-based isolation is designed
to provide more secure programs, where program components are separated into differ-
ent partitions. However, isolation itself is not adequate to prevent the malicious cross-
partition memory access. We develop a tool to systematically detect vulnerabilities that
allow attackers to bypass isolation methods by controlling inputs to isolated partitions.
Then we look into the new exploit vector in the data space, which consists of memory
variables not directly used in control-flow transfer instructions. The state-of-the-art at-
tacks in data space directly corrupt security-critical data. Instead, we take data flows
of a program, which describe how the data are used, as the attack targets. We observe

that end-to-end data flows can be broken into small pieces with the memory error. We



propose a general technique to build data-oriented attacks, called data-flow stitching, by
connecting particular data flows of security-critical data. We show that data-flow stitch-
ing is practical and significantly enlarges the space of data-oriented attacks. Finally, we
explore the computational expressiveness of data-oriented attacks, regarding the ability
of performing arbitrary computations. The conventional wisdom is that data-oriented
attacks can only corrupt or leak several bytes of the critical data, due to its limitation on
control flow diversion. We perform a comprehensive evaluation on the prevalence of the
fundamental elements to build high expressive data-oriented attacks. Our result shows
that data-oriented attacks can express Turing-complete calculations, even starting from

one common memory error, like buffer overflow.

1.1 Thesis Overview

Next, we give an overview of the projects constituting this thesis.

A Systematic Method to Detect Memory Errors Exposed by Privilege-based Iso-
lation. First we study the consequence of the execution environment change where
memory access components are disconnected from original constraints. This discon-
nection is introduced by privilege-based program isolation, a fundamental method to
improve the security of the legacy code [34,42, 106, 168]: the monolithic code is di-
vided into several partitions. Each partition is protected through memory isolation,
where others cannot directly access one partition’s memory space, unless with clearly
defined interfaces. However, component isolation re-positions each isolated partition
into a “relaxed” execution environment with less program constraints (e.g., input san-
itization). The “relaxed” memory access operations obtain extra capability. Particular
memory access patterns inside one partition may allow untrusted parties to arbitrarily
influence its private memory space through the interfaces. For example, the Iago [54]
attack allows the malicious kernel to corrupt program’s private memory space, even if
the program is protected by isolation [57]. We refer to this type of memory access pat-
terns as Dereference Under the Influence (DUI). The DUI exploit provides attackers a
feasible channel to launch attacks against memory isolation. In this thesis, we develop a
systematic method to analyze each individual memory access component in the mono-

lithic program to detect potential memory errors. Our method successfully detected

4



several DUI vulnerabilities in the privilege-separated software. Further, it reports the
attackers’ capability obtained by DUI exploits.

Memory errors provide attackers the ability to mount exploits. Many research ef-
forts have been spent on the prevention of control flow hijacking attacks. However,
attackers are not limited to one particular exploit methods. Data-oriented attacks are
powerful alternatives, as they only alter the security sensitive data inside program to
achieve the evil goal, which can bypass most of the current defenses. We look into the

practical viability of data-oriented attacks.

A General Method to Build Data-Oriented Attacks. It is difficult to build data-
oriented attacks, compared to build control-flow hijacking attacks. We look into them
from another perspective, where the original data flows inside the program are split
by the memory errors into small pieces and can be re-organized for malicious purpose.
With our new perspective, each data-flow piece can perform a specific computation. We
develop a novel method, called data-flow stitching, to systematically select and connect
these data flows. Note that the program’s behavior is the multiplication of all data flows.
The method of two data-flow stitching is as follows: We first select one data flow as the
source flow and another as the target flow. Then we search along the source flow and the
target flow to find the pointers that decide the data-flow direction. At last we connect
data flows by manipulating the data-flow pointers. The meaningful new data flow helps
attackers mount exploits. We design and implement a framework, called FLOWSTITCH,
to systematically search data-oriented attacks from potential solution space. The result
shows that FLOWSTITCH is both effective and efficient. Automatic generation of data-

oriented attacks is possible.

A Comprehensive Evaluation on the Expressiveness of Data-Oriented Attacks.
We consider more extensive usage of data-flow split and re-organization to understand
the computational expressiveness of data-oriented attacks. It is commonly understood
that the expressiveness of data-oriented attacks is limited, due to the missing ability to
divert the control flows. We ask the following question: what is the real expressive
power of data-oriented attacks? Our answer is that such attacks are Turing-complete.

We present a systematic technique called data-oriented programming (DOP) to con-



struct expressive data-oriented attacks for arbitrary x86 programs. The idea is to iden-
tify basic gadgets that perform fundamental calculations and to stitch them together with
particular program logics — the dispatcher. The dispatcher selectively connects partic-
ular gadgets for malicious computations. We develop a tool to systematically identify
gadgets and dispatchers from the vulnerable program. With our tool, we identify a
large number of gadgets and dispatchers available from real-world programs. Two of
them are confirmed to be able to build Turing-complete attacks. We build end-to-end
attacks to bypass randomization defenses without leaking addresses, to run a network
bot which takes commands from the attacker, and to alter the memory permissions, re-
spectively. All the attacks work in the presence of ASLR and DEP, demonstrating how

the expressiveness offered by DOP significantly empowers the attacker.

Summary of Contributions:

* We study the problem of unexpected memory accesses in privilege-based isola-
tion. We design a novel mechanism to systematically detect DUI vulnerabilities,
and to estimate attackers’ capability in controlling user memory spaces. Our eval-
uation on several real-world systems detects severe DUIs in user / kernel isolation
and main code / library isolation.

* We conceptualize data-flow stitching, a new approach that systematically gener-
ates data-oriented attacks, by composing the benign data flows in an application
via a memory error. We build a prototype, FLOWSTITCH, to show that construct-
ing data-oriented attacks from common memory errors is feasible, and offer a
promising way to bypass many defense mechanisms to control-flow attacks.

* We show that with a single memory error, data-oriented attacks can mount Turing-
complete computations with data-oriented programming (DOP). We propose con-
crete methods to synthesize such expressive attacks. Our evaluation of real world
applications shows the prevalence of data-oriented gadgets and dispatchers re-
quired by DOP. We build end-to-end data-oriented attacks which work even in

the presence of DEP and ASLR.



Chapter 2

Background

In this section, we provide the background of memory errors, including the scope of
memory errors discussed in this thesis, existing memory error detection and prevention

mechanisms, various exploit methods, and defenses against memory error exploits.

2.1 Memory Error & Detection

In this thesis, we define “memory error” as follows. During the program execution, one
memory operations should only access a subset of the full memory space at a specific
time . The program’s legitimate memory access can be described as a set of legiti-
mate memory accesses. Any memory access that does not belong to the legitimate set
is an unexpected memory access. If it shows during program execution, then it is a
memory error. There are two types of memory errors: the spatial memory error and
the temporal memory error. Both of them are not in the legitimate set: the former one
has an incorrect memory space, while the latter one has the incorrect time. The result
of the unexpected memory access may vary accordingly. It may cause the program to
crash, show some unexpected behaviors, or just work well as expected. Examples of
memory errors include buffer overflow [61, 68,74, 132], buffer underflow [66], format
string vulnerability [71,77,79, 146], integer overflow [72], use-after-free [78], double
free [67], type confusion [64], dangling pointer [73] and so on. Memory error violates
the designer’s purpose and thus leads the program execution to unexpected behavior.
Memory errors are introduced by the programming mistakes made by developers.

Type-unsafe languages, like C and C++, allows developers to manage the program



memory space by themselves. Careless programming is prone to make mistakes, bring
memory errors into the code. In fact, as the size of program code base increases and
developer’s efforts are limited, it is inevitable for a huge program to contain memory

€ITorS.

Next, we show the state-of-the-art techniques to detect memory errors and to prevent

successful exploits.

2.1.1 Memory Error Detection

To efficiently and effectively detect memory errors, a lot of methods have been de-
veloped to detect memory errors. Static detection checks the program source code or
binary to detect violation of program static feature. For example, gcc compiler detects
out-of-bounds access during the compilation. However, static detection cannot find the
memory errors only shown during the real execution. Hence we focus on the dynamic

detection methods next.

Symbolic Execution. Symbolic execution is commonly used for dynamic vulnerabil-
ity detection. In symbolic execution, the program is executed with symbols rather than
concrete values. Operations on the inputs are represented as an expression of the sym-
bols, naturally providing constraints on possible values of the input after each operation.
As a result, symbolic execution [107] has been extensively used in program testing and
vulnerability analysis [38,44, 45,120, 139]. EXE [45] aims to automatically generate
the input that crashes the program. It uses symbolic input to drive the program execu-
tion and records all the constraints along the path. By solving the constraints, it can
generate concrete inputs that drive down a particular path, including the one triggering
memory errors. KLEE [44] is designed to generate program test cases to cover a large
portion of the program paths. Catchconv [120] detects memory errors caused by integer
conversion errors. Brumley et al. [38] proposed an automatic memory error detection
method, which detects deviations of different protocol implementations. Darwin [139]
uses symbolic execution to find the input that distinguishes the executions of the stable

program version and a new version, thus identifying the bugs inside the newer one.



Taint Analysis. Dynamic taint analysis is another technique frequently used to detect
vulnerabilities. In taint analysis, each variable is associated with a metadata, record-
ing the source of the data. Attacker-controlled data are usually marked with a special
tag in its metadata. Whenever a variable is used to derive other values at runtime, its
metadata is propagated to the target data. This enables the analyst to determine the
data flow and the attackers’ influence. Security analysts predefine a set of program
memory access features, and check the program execution with the metadata to de-
tect violation of such features. Many work utilized taint analysis to detect and analyze
vulnerabilities [40, 49, 183] and malware [83, 172]. Newsome et al. [128] proposed
using dynamic taint analysis to find bugs. Brumley et al. [40] proposed a method to
generate vulnerability signatures, based on the input data set that triggers the vulnera-
bility. HI-CFG [49] introduces a hybrid information- and control-flow graph to generate
attacks for vulnerable programs accepting complex inputs. AppSealer [183] automat-
ically generates patches for Android applications to prevent control flow hijacking at-
tacks. Panorama [172] captures the information flow of sensitive data in system level to
identify malware and analyze its behavior, including which sensitive data is stolen and

where the information is sent.

2.1.2 Memory Safety Enforcement

Memory safety enforcement can prevent all memory errors at the first step. There are
two types of memory safety: spatial safety and temporal safety. The spatial safety
requires each memory access to be within a valid boundary, while the temporal safety
enforces the memory access to be within a valid life-time. The basic idea to enforce
spatial memory safety is to add boundary checking log for each memory access inside
the protected code. To enforce the temporal safety, the idea is to insert code to check
the liveness of the accessed variable. The instrumentation can be performed on program

source code, intermediate representation (like LLVM IR), or the binary code.

Spatial Memory Safety Enforcement. Cyclone [105] and CCured [124] introduce
a safe type system to the type-unsafe C language. The idea is to use a fat-pointer to
record the starting address and end address for each pointer in the program. All memory

accesses are checked for out-of-bounds access. This requires source code annotation



and changes the memory space layout. SoftBound [122] uses a dedicated memory
space to hold the pointer information. It keeps the memory layout but requires extra
memory access to retrieve metadata. Instead of tracking information for each pointer,
several work [18, 141] tracks the information for each object. The benefit is that it is
not necessary to update the pointer information for each pointer operation, especially
pointer operation by uninstrumented code. CRED [141] uses this method to enforce
the spatial memory safety. Baggy Bounds Checking [18] aligns each object size to a
power of two to implement a fast checking. AddressSanitizer [147] places guard pages
between objects to detect out-of-bound memory access. LowFatPtr [82] encodes the
length and base information of a pointer inside its address value, and thus provides an

efficient implementation.

Temporal Memory Safety Enforcement. To enforcement temporal memory safety,
CETS [123] and FreeSentry [174] maintain the pointer life-cycle information inside
its metadata region. All memory accesses are checked to make sure the pointer used
in the operation pointing to alive objects. Memcheck of Valgrind [126] and Address-
Sanitizer [147] instead maintain the life-cycle information for each object. They can
detect the memory access to a deallocated object, but cannot find the error that reuse
a reallocated object. Cling [17] enforces a type-safe memory space reuse, where the
memory space can only be reused for the object with the same type and alignment. It is

a replacement of malloc function, hence only protecting heap objects.

Enforcing memory safety totally prevents memory errors from the source. However,
the introduced performance overhead is usually unacceptable. For example, SoftBound
with CETS provides complete memory safety, but suffers from an overhead of 116%
on average. To make a balance between memory safety and the performance, there are
some proposals that selectively protect security-critical memory space and leave other
space unprotected. For example, code pointer integrity (CPI) [109] only protects code
pointers, with a dedicated memory location to store code pointers metadata. CPI only
has 2.9% overhead on average. However, as the security is sacrificed, CPI can be broken

by information leakage attacks [87]
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2.2 Exploits and Defenses

Since memory error changes the program’s behavior, it provides attackers a opportunity
to control program’s execution. Note that some memory errors have limited influence

on program’s execution, so cannot be used attackers to exploit the program.

2.2.1 Memory Error Exploits

Control Flow Hijacking Attacks. Control flow hijacking attacks takes over pro-
gram’s execution path, and redirects it to the malicious path or code region. Mem-
ory errors are used to change the indirect control flow transfer targets, like return ad-
dresses saved on the stack, and function pointers in memory. The first developed con-
trol flow hijacking attack directly injects code into vulnerable program’s memory space,
and diverts the control flow to the malicious code, called code injection. Code injec-
tion gives attackers the ability to upload arbitrary code and execute it. However, it
requires the memory space to be both writable and executable. As modern systems
disable such memory feature, code injection attack requires at least one more step to
create the writable and executable memory region. Code reuse attacks avoid requiring
such memory region and instead reuse the existing code inside the vulnerable program.
Return-to-libc attack [125] redirects the execution into critical library functions, like
system, to mount meaningful attacks. In this case, no new code is introduced into
the memory space. Existing functions inside the vulnerable process are reused by at-
tackers. A generalization of return-to-libc attack is the return-oriented programming
(ROP) [35,52,149]. ROP reuses small code fragments with a indirect jump (called
gadgets) to achieve Turing-complete execution. Due to the large code base of modern
programs, with a high probability attackers can find enough gadgets to mount exploits.
A following work [142, 144] shows that building ROP attacks can be simplified and au-
tomated. ROP has been transplanted to other architectures [43,53,90, 108] and several

variations [33,37].

Data-Oriented Attacks. Instead of diverting the control flow, data-oriented attacks
modify the security-sensitive data inside the program to achieve the same goals as con-
trol flow hijacking attacks. There are several types of security-sensitive data. The de-

cision making data determines the execution path. For example, the Safemode [175]
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flag inside IE determines whether it is allowed to load untrusted plug-ins into process
without user notification. Altering such data will change the program execution flow,
without touching the control data. Program configuration data decides the program
settings, some of which are related to the security feature of the program. For exam-
ple, the RootDir in Apache configuration file specifies the root direct of the web server
and make files outside secret. Changing this data will affect program’s security feature
and lead to attacks. Chen ef al. [56] shows that data-oriented attacks are realistic and
can cause damages as severe as control flow hijacking attacks. They manually built
data-oriented attacks for several vulnerable programs and demonstrated the possibility.
However we can see few data-oriented attacks in real-world since it has constraints on

program’s control flow.

Exploit methods evolve fast as more advanced defense mechanisms are proposed [159].
We believe new exploit methods will be developed in the future. Nowadays, the com-
mon exploit method for control flow hijacking attacks is to use ROP to enable a writable
and executable memory location and use code injection to mount attacks. For data-
oriented attacks, only Chen et al. explored their possibility. There is no deep explo-

ration on them.

Automatic Exploit Generation. Although there are a lot of useful exploit methods,
creating a working exploit is a tedious and repeated work. To address this problem,
many researchers investigate automatic methods to generate exploits. Heelan [99] dis-
cussed algorithms to automatically generate exploits to hijack the control flow for a
given vulnerable path. Brumley ef al. [41] described an automatic exploit generation
technique based on program patches. The idea is to identify the difference between the
patched and the unpatched binaries, and generate an input to trigger the difference. They
proposed that an exploit can be described as a predicate on the program state space.
Avgerinos et al. [23] inherited and refined this description and discussed Automatic Ex-
ploit Generation (AEG). AEG can generate real exploits resulting in a working shell
from stack buffer overflow and format string vulnerabilities. The following up work,
MergePoint [24], is a symbolic execution tool for large-scale testing of COTS software.
Felmetsger et al. [88] discussed automatic exploit generation for web applications. Cur-

rent automatic exploit generation only applies on several types of vulnerabilities. The
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scalability of these methods is limited.

2.2.2 Defenses against Exploits

As a second-step defense, researchers develop a lot of mechanisms to prevent attack-
ers from building a working exploit. In this way, even memory errors are triggers by

elaborated inputs, attackers cannot mount successful exploits.

Address Randomization. One way to prevent exploits is to force a random value
requirement for exploit generation. Address space layout randomization (ASLR) [30]
randomizes the memory layout of the protected process. With ASLR, the address of
each value (code or data) will be randomized at runtime, and will be different for each
concrete execution. Attackers cannot predict the addresses in advance. For example,
they cannot guess the target code address (i.e., address of the injected code, address of
the library functions, or address of the gadgets) to build control flow hijacking attacks.
For data-oriented attacks, attackers have less knowledge of the security-sensitive data,
thus likely failed to corrupt it. Currently ASLR implementations deployed on modern
systems have low randomization entropy [5, 135, 162]. For example, most of Linux ex-
ecutables are compiled without the “-pie” (position independent executable) option. As
a result, the main code of the program has to be loaded into fixed addresses. On Win-
dows system, several important libraries, like msver71.dll, hxds.dll, are complied with-
out randomization support [169]. Windows and Linux implement ASLR with different
methods: Windows mainly replies on the loading-time program patching, while Linux
depends on PIE code. Therefore the resulted performance is also different. Windows
ASLR has a larger loading time, but once loaded, the program runs as un-randomized
code. But for Linux, there is almost no loading overhead, but each execution of the PIE
code will suffer some overhead. There are also proposals that randomize the program
in a fine granularity [26,92, 100, 167] and run-time randomization [20]. These methods
improve the security guarantee of ASLR, but are not widely deployed due to the high

performance overhead or requirement of reliable binary disassembling.

Data Execution Prevention. To defend code injection attacks, DEP [21] is designed

to prevent the data region from being executed. DEP enforces that the executable code
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region is not writable, and enforces that the writable data region (like stack, heap) is not
executable. The implementation of DEP on Linux system is called NX (non-executable
bit). Recent CPU feature EPT (extended page table) by Intel [104] supports to configure
a memory page to be readable, writable and executable independently, which provides
users a flexible security model. To bypass DEP, attackers tend to launch ROP attacks to

set several writable and executable pages. Then they mount the code injection attacks.

Control Flow Integrity. Control flow integrity (CFI) [15] requires the program’s ex-
ecution conform the predefined control flow graph (CFG). By this way, any attack that
attempts to divert the program’s execution will fail the security checking. Attackers
can only change the indirect control flow jump, so that CFI only adds checks for in-
direct control flow transfers (return addresses or function pointers). There are several
ways to implement CFI: one is based on information hiding — only the legitimate tar-
get has the secret id and the checking code before indirect transfer will compare the
target id with the legitimate one; another way to use the address as the id, and use a
dedicated table to maintain the legitimate targets. The first method has a good per-
formance, but suffers from the information leakage attack. The second method is re-
silient information leakage, but has a high performance overhead. Even with the first
method, CFI suffers from a high performance overhead. To make it practical, several
work [63, 129, 160, 166, 177, 180, 182] tries to make a balance between the security
benefit and the performance overhead, developing coarse-grained CFI. However, recent
work [48, 80, 96,97] shows that with a coarse-grained CFI, attackers still have enough
freedom to build control flow hijacking attacks, since the limitations on legitimate tar-
gets are relaxed. A recent work, control flow bending [46] shows that even with the
deployment of the fine-grained CFI, there are still space for attackers to mount attacks.
The reason is that the static CFG allows infeasible dynamic path. If one function is

frequently invoked, it can be used as the dispatcher to call infeasible paths.

Data Flow Integrity. Other than control flow integrity, data-flow integrity (DFI) is
used to protect the data (control data or non-control data) inside the program. There are
two approaches to enforce DFI. One uses dynamic information tracking to identify the

type of information flow [158, 170, 173]. The other uses static and/or dynamic analysis
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in order to determine the set of legitimate instruction sites where a particular memory
can be modified or used [50, 178]. These defenses are not yet practical often requiring
large overheads or manual declassification. One particular dynamic tracking approach
is outlined by Suh er al. [158]. They proposed to add a security tag to the data and to
propagate the tag throughout the program’s execution. When the program uses certain
values (like instructions, load addresses, etc), it checks the tag to determine if the data
are spurious or not. If so, an error is raised. This approach is implemented by modifying
the hardware architecture. The other approach described by Castro et al. [50] involves
identifying the set of legitimate sites where data can be modified or used and checking

if the modifications are indeed made from this set.

Specific Defenses. There are a lot of defenses that are developed to prevent a par-
ticular type of attacks. SafeSEH is used to prevent SEH exploit, where the exception
handler saved on stack for Windows executables is used to divert the execution. Shadow
stack places the saved return address on another dedicated memory location. It uses the
shadow value to check the return address integrity on return, or directly use it to re-
turn, Stack smashing protection [164] inserts a canary between a potential buffer and
the saved registers and return addresses. To overflow the return address, attackers have
to consequently write the stack memory, including the canary, leading to the attack de-
tection. VTint [179] sets the virtual function pointer table used in C++ programs to
read-only so that attackers cannot corrupt them to mount control flow hijacking attacks.

Another fundamental method to mitigate the damage of memory error exploits is
privilege isolation. It splits the program into many relatively independent components
and groups them into several partitions. Each partition is only assigned minimal priv-
ileges, which are necessary for that partition to function correctly (a.k.a the least priv-
ilege principle). Under this protection, even if some partitions are compromised, at-
tackers can only get the privileges of the compromised partitions. Other partitions are
still protected. Privilege separated programs have stronger security guarantee than the

monolithic ones.

Process-Based Isolation. As the unit for operation systems to allocate system re-

sources (e.g., memory, opened files), process is naturally selected as the container for
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isolated partitions. The privilege-separated program creates several processes at run-
time. Only the privileged processes have access to sensitive resources, while the un-
privileged processes require information from the privileged ones. The operating sys-
tem and the underlying hardware help prevent cross boundary access.

There is many work that leans on process-based isolation. Provos et al. [138] ap-
plied process-based isolation on OpenSSH program and split it into a privileged monitor
process and several unprivileged slave processes. They show the isolated program can
prevent a set of known attacks, with acceptable performance overhead. Following this
direction, Kilpatrick proposed Privman [106], a library that developers can use at de-
velopment time to protect their code through process-based isolation. Privtrans [42]
provides a method to automatically split the existing code into privileged partition and
unprivileged ones, with few manual annotations. It identifies all privileged code through
program analysis, saving some manual analysis time. Wedge [34] provides a new sys-
tem primitive, sthread, to represent a partition. Compared to the process-based iso-
lation, sthread can afford fine-grained privilege isolation. Within the same memory
space, each sthread is assigned privileges to access particular memory regions and files.
It based on the dynamic program analysis to figure the privileges associated with each
sthread. Process-based isolation is also used to protect the main program from un-
trusted libraries. Codejail [168] creates a low-privileged process to load each untrusted
libraries, like 1ibpng. Then the library process periodically commits the updated data
to the main process, while the main process selectively updates its own memory.

In contrary to the security benefit, process-based isolation brings a heavy perfor-
mance overhead. The original communications (e.g., memory accesses, function calls)
are changed to inter-process communications (e.g., shared memory, network socket).
Program’s performance can be significantly slowed down, based on the number of inter-

process communications.

Software-Based Isolation. To achieve a better performance, software-based fault iso-
lation (SFI) creates boundaries (fault domain) within the process memory space. SFI
enforces that the code inside one fault domain can only access data or transfer control to
code within its own fault domain. In this case, the malicious or compromised partition

cannot introduce damage to others outside of its fault domain. SFI can be implemented
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by checking or sandboxing through code writing. It is the SFI developer’s responsibility

to enforce the protection at runtime.

SFI has been extensively used and transplanted to many architectures. Wahbe et
al. [165] first proposed efficient software-based fault isolation on RISC load/store ar-
chitecture. They designed two methods to conform each partition. One method is to
insert checking code for each memory access or control flow transfer instruction. If the
target is out of the fault domain, SFI gives warnings. Another way is to always patch
the target address to one inside the fault domain, regardless the original target value.
They also introduced cross-fault-domain RPC for legitimate communications. Result
shows that SFI is a light-weight solution and achieves a balance between security and
performance. After the first proposal, several work [86,114,152] tried to transplant SFI
technique to CISC architecture. The main difference between CISC and RISC system
related to SFI is that CISC architecture supports variable-length instructions. In the
original SFI proposal, the control flow is allowed to transfer to a validate code entry.
Since instruction is 4-byte aligned, this checking is very fast. While in a CISC sys-
tem instruction length varies from different instruction format, it is slow to confirm that
control flow will jump to a valid code entry. To address this problem, PittSFIeld [114]
uses binary-writing to align the jailed code. Each valid jump target is relocated to the
start of a memory chunk. Only the starting address of a memory chunk is valid target.
Then they applied the original SFI on the rewritten binary. Browsers like Chrome ex-
tensively use SFI to protect themselves from their various plug-ins. Native Client [171]
is a sandboxed execution environment for untrusted x86 native code inside plug-ins. It
loads the untrusted native code as a NaCl module, making it portable across operating
systems and web browsers. Native Client uses a sandbox to limit the code and data
access within the fault domain of NaCl module. To allow communications cross NaCl
modules, it provides a narrow set of APIs for the jailed native code. Untrusted plug-ins
have to be recompiled with Native Client compiler to support execution inside NaCl
module. JIT-NaCl [22] is a patch to Native Client to support just-in-time code and
self-modification code. The idea is to introduce the sandboxing code at the JIT code

generation and modification time, and enforce the checking at the code execution time.
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2.3 The Need for New Systematic Solutions

Existing defense methods can detect and defeat a large portion of known memory errors
and exploits. However, the exploit techniques are quickly developing to bypass existing
mechanisms. Such changes in memory error exploit methods will bring challenges to
current solutions. Instead of building defenses after memory errors and exploits, we
need an effective solution to quickly response to new exposed memory errors, and a

systematic method to explore potential exploit directions in advance.

Systematic Method to Detect New Memory Errors. Memory errors are caused by
original code blocks with memory operations. To detect memory errors, we need a
systematic analysis platform to deeply understand the memory access behavior of each
block. With this understanding, we can quickly conclude the consequence of the mem-
ory and measure the severity when a new memory is exposed. Further, we can detect
new memory errors, if we know the new execution environment, when the code is trans-

formed with privilege-separation.

Comprehensive Understanding of New Exploit Vectors. With program isolation or
memory error exploits, attackers get the chance to break end-to-end program logic and
reorganize them for malicious purposes. They can make the block misbehaved and re-
connect it back to the rest of the program in a malicious manner. Code reuse attacks
are well-known to public, like return-to-libc attacks and return-oriented programming
(ROP). However, as an analogy of ROP in non-control data space, data-oriented attacks
can easily bypass existing solutions. We should explore such attacks to understand
the attacker’s capability with these new exploit vector, like the difficulty to build data-
oriented attacks and the expressiveness of such attacks. This understanding will help us
build new defense mechanisms to prevent severe damages from malicious exploits in

the future.
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Chapter 3

Detecting Memory Errors in

Privilege-Separated Software

Privilege separation is widely used to secure complex software systems. It divides a
monolithic program into several partitions and each partition only has a reduced set of
privileges. There are clearly defined boundaries between different partitions and usually
they do not share resources by default. Inter-partition communication is only allowed
via clearly defined interfaces. In this work, we use partition as a general concept of the
isolated environment, instead of any concrete mechanism (e.g., process, fault domain).
Privilege separation guarantees that even some partitions are malicious or compromised,
other partitions and their associated resources are still securely protected. To apply
privilege separation on legacy programs, developers need to transform the monolithic
legacy programs, either manually or automatically. For example, the OpenSSH server
was originally implemented as a monolithic program, where a single vulnerability will
expose all critical resources to attackers. To mitigate the threat, part of OpenSSH code
without access to high-privileged resources (e.g., password) was separated from other
code and isolated as a slave process [138]. In addition, Qmail [29], Postfix [36] and
Google Chrome [28,171] are also designed (or re-designed) with privilege separation.
To facilitate retrofitting legacy code into privilege-separation designs, many solu-
tions have been proposed to partition software and assign each partition a different set
of privileges, such as Wedge [34], Privtrans [42], and Privman [106]. The deployed
techniques include sandboxing [165,168,171] and process-based isolation [34,42,106].

When the monolithic code is divided into several partitions, original program behaviors
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inside the original code (e.g., function calls or direct memory access) need to be trans-
formed into inter-partition communications (e.g., via socket and shared memory). As a
result, program logic that ensures the correctness of program semantics, such as error
handling and assertions, may be separated into different partitions and thus fail to en-
force the checking. Therefore, additional checking code is usually needed, especially in
the high-privileged partitions, to make sure that data from other partitions is valid and
legitimate. However, if the transformation fails to include proper checking code in the
high-privileged partition, attackers get the chance to use specially-crafted inputs to com-
promise the high-privileged partitions and carry out privilege escalation attacks. One
famous example is the buffer overflow vulnerability, where the high-privileged partition

lacks of boundary checking on the buffer access with untrusted data.

Other than the known problems, there are more subtle memory errors in the high-
privileged partitions, with which attackers can perform arbitrary memory access inside
the high-privileged partition. These memory errors require particular memory access
patterns. For example, if a partition uses an input from another untrusted partition as
the array index, writing to the array inside the partition is an arbitrary memory access
under the influence of the input provider. Attackers can utilize this memory access

behavior to modify critical data or retrieve secrets of the partition in a targeted manner.

In this work, we refer to this type of memory access errors by the acronym DUI
(Dereference Under the Influence). It stems from the memory access pattern in the
vulnerable partition: The address used in memory read or memory write is influenced
by malicious data from other partitions. DUI allows cross-partition memory access,
violating the goal of privilege-based isolation. Therefore it is necessary to identify them
and then handle them specially by programmers. It is worth to note that attackers can
corrupt discrete memory locations with DUI exploits, instead of a continuous memory

region. This means defenses like stack canary cannot prevent such attacks.

Challenges. DUI exploits can be prevented through sufficient checks on interface
inputs. Unfortunately, it is non-trivial to ensure that adequate checking code has been
added at correct locations. The checking code in legacy programs is often scattered
across many program locations in the monolithic code base, which is split during the
privilege-separation transformation, it is necessary to guarantee that each of these pro-

gram locations are checked correctly. However, to achieve this goal, manual modifica-
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tion usually takes a long time to fully understand the requirement of checking opera-
tions, while automatic separation methods often miss important checks. Therefore, we
need a systematic method to detect such DUI vulnerabilities resulting from privilege-

separation transformations.

Our Approach. To address these challenges, we develop an approach, DUI Detec-
tor, to automatically and systematically detect code suspicious to DUI exploits in the
binary of the high-privileged partitions. Specifically, through dynamic binary program
analysis, we identify the suspicious instructions that use data from other partitions as
addresses. We choose dynamic analysis to avoid the large number of false positives
cased by inaccuracy in static analysis. Then we use symbolic analysis to identify code
with the DUI vulnerability and assess the attackers’ capabilities in exploiting them.
Symbolic analysis makes our approach cover all inputs triggering the same execution
path. DUI Detector helps identify concrete code instances that are easily influenced by

attackers among a large code base, which should be taken care of by programmers.

We applied our approach on several real-world software systems retrofitted with
different types of isolation schemes. DUI Detector successfully detected DUI vulner-
abilities inside them. We present four case studies where attackers can perform DUI
attacks, in cases of kernel-user isolation and library isolation. Furthermore, our ap-
proach reports the attackers’ capability to the developers, providing a comprehensive

understanding of the vulnerability.

In summary, this work makes the following contributions:

* We study the problem of arbitrary memory access (DUI) in privilege-separation
transformations, and identify several general memory access patterns leading to
DUI vulnerabilities in binary instruction level.

* We design a novel mechanism to automatically detect DUI vulnerabilities, and to
estimate attackers’ capability in controlling user memory spaces. It helps devel-
opers add sufficient checking.

* We prototype an automated tool and evaluate it on several real-world software.
Our tool automatically detects and comprehensively analyzes DUTIs in these soft-

ware programs when they are gone through privilege-separation transformation.
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struct subobj { ... } x p_sub;
struct object {
struct subobj * sub;

} * p_obj;
int main () {
p_obj = create_object ();

0N N B W~

p_sub = create_subobj();

9 p_obj->sub = p_sub;

10 }

11 // create an object instance and return its pointer

12 struct object » create_object () {

13 struct object * ptr = malloc(sizeof (struct object));
14 if (ptr == NULL) { /x error handling =/

15 if (isFreed(ptr)) {/* the pointer is freed, error handling =*/}
16 /+ more program specific checks «*/

17 return ptr;

18 1}

19 // create a subobj instance and return its pointer

20 struct subobj x* create_subobj() {

21 struct subobj * ptr = malloc(sizeof (struct subobj));
22 if (ptr == NULL) { /* error handling =/

23 /* more program specific checks x/

24 return ptr;

25 1}

Code 3.1: Example code to illustrate DUI problem.

3.1 Problem

In this section, we motivate the problem by a concrete example. Then we define the

problem of DUI detection and two DUI types: The write DUI and the read DUI.

3.1.1 Motivating Example

We use the example in Code 3.1 to illustrate the memory access problem during the
program transformation. In this example, the structure object has one pointer of
structure subobj. Functions create_object and create_subob j return point-
ers of new structure instances. The statement on line 9 in function main assigns the
pointer p_sub of a subobj instance to the subobj field of an object instance.
Originally function create_object and create_subobj are in the same partition
with the function main, and there are checking code inside them to make sure that the
return values are correct. During the transformation, these two functions are separated
into a low-privileged partition since they are not trusted any more. In this case, the low-
privileged partition only works as a memory manager, but does not have access to the

memory of main code. Therefore, the returned addresses could be malicious. To protect
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1 vl = API_recv();
v2 = API_recv();
3 arrayl[vl] = v2;

Code 3.2: An example of write DUI

the high-privileged main function, we can use memory isolation to prevent the direct
memory access from low-privileged code to main’s memory, in which case function
create_object and create_subob ] just manage main’s memory. However, this
is inadequate to protect the high-privileged main: The statement on line 9 contains a
memory error. When the low-privileged partition is malicious, it allows writing a mali-
cious p_obj to a memory location p_sub inside the protected one. The statement on

line 9 is an instance of DUI vulnerability.

3.1.2 Problem Definition

We give the definition of the problem solved in this work.

DUI Detection: Given a partition of a privilege-separated program, we detect whether
the partition’s memory access behaviors can be influenced by data from its interfaces. In
particular, the memory addresses or the data are derived from the interface inputs, giving
attackers the ability to read or write to a large range of memory inside the partition.
Attackers use the DUI vulnerability as a memory access service to mount attacks.
They specify the address and the data through specially-crafted inputs. DUI vulnerabil-
ity then finishes the memory operation on behalf of attackers. In real-world programs,
the logics used to derive the address from the interface inputs could be complicated,
thus subtle and hard to spot. However, the final result is that the attacker can exercise
certain levels of influence over the address of the memory operation. It is worthwhile to
note that only controlling the memory address is inadequate to corrupt the memory or to
steal the sensitive information. Corresponding data flows are necessary to provide the
malicious data or send the confidential data out. Based on the direction of the memory

access, there are two types of DUI, the write DUI and the read DUI.

Write DUL.  We call a memory write operation the write DUI if both the memory
address and the value to be written in the operation are derived from the interface inputs.

Take the code in Code 3.2 as an example. The API recv() is an interface through
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which the code can receive data from other partitions. The memory write operation on
line 3 has the address array + v1 and the data v2 derived from the interface inputs,
which allows the input provider to write the selected data to any address in its memory
space. We can relax the requirement of the data to be written to a value predictable by
attackers. An example is that if v2 in Code 3.2 is a constant 0, attackers can use v2 to
reset important flags, or terminate a C-style string. With the write DUI, attackers can
corrupt the memory of the vulnerable program. Not only can they mount control flow
hijacking attacks by corrupting code pointers or return addresses, they can also change

critical data in memory to mount non-control data attacks [56].

1 vi = API_recv();
2 data = x(base + vl);
3 API_send(data);

Code 3.3: An example of read DUI

Read DUIL. We call a memory read operation the read DUI if the memory address
in the operation is derived from the interface inputs and the retrieved data are eventu-
ally passed to the output interface of the partition. Consider the example in Code 3.3.
API recv() and API _send() are APIs used by the code to receive data from other
partitions and send data to other partitions, respectively. This code snippet retrieves
data from a local buffer and sends it out. Since the data retrieving address base + vl
is under the control of attackers via the interface input v1, attackers can steal sensitive
information from the partition. For read DUI, it is insufficient to control the memory
read address. The data being read has to reach an output interface for it to complete.
In real-world programs, the web client may have secret keys or high-privileged files on
the server client. Attackers can use read DUI vulnerability to steal the secret key or
file. Another exploit is to leak the randomized address of the loaded modules, leading

to bypassing address randomization protections [30, 134].

3.1.3 Memory Access Patterns to Detect DUIs

Although attackers can use various ways to control the memory access, one DUI vul-
nerability is inevitably represented as attacker-controllable memory address and data

in memory access instructions, i.e., the address is derived from the input, and the data
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Figure 3.1: Design of the DUI Detector. There are two inputs to the system. One is
the program binary, containing the partition to be checked. Another one is a normal
input to the program. The output is the list of DUI vulnerabilities and the assessment of
attackers’ capabilities.

also comes from the input (for the write DUI) or is sent out (for the read DUI). This
observation inspires us to use instruction-level memory access patterns to detect DUI

vulnerabilities. We summarize the memory access patterns used in DUI exploits below.

* Write DUI Pattern 1. The memory write address and the data are derived from
the interface inputs. In this case, attackers control both the value and the address
in memory write operation.

* Write DUI Pattern 2. The memory write address is derived from the interface
inputs. The data value is predictable to attackers. Attackers can exploit this code
to set the predictable value to any memory address.

* Read DUI Pattern. The memory read address is calculated from the interface
inputs. The retrieved data are then passed to output interfaces (e.g., via network,

file operation or standard printing).

3.2 Design

3.2.1 Overview

Figure 3.1 shows the design of our DUI detection tool, DUI Detector. It takes two
inputs: The program binary containing the partition to be checked and a normal input
to the program. It detects DUI vulnerabilities during the binary execution for the given
input and estimates the capability of attackers obtained by DUI exploits. There are three
phases in the process: Execution state collection, suspicious instruction shortlisting and
dereference behavior analysis.

Execution State Collection. First we run the program binary in an emulated envi-
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ronment with the given input and record all the execution states of the checked parti-
tion, including instructions, operands, processor states and memory states. We also log
system-level information such as module loading and unloading behaviors.

Suspicious Instruction Shortlisting. From the execution states, our tool identifies
instructions potentially vulnerable to DUI exploits. We use data dependency analysis to
find the source of the memory address and the data used in memory access instructions.
For a memory read operation, we also search forward to check whether the retrieved
data is sent to other partitions through output interfaces. If the address is derived from
the interface inputs and the data is derived or used in an attacker-controllable manner,
we report this memory operation as a suspicious DUI vulnerability.

Dereference Behavior Analysis. Our tool performs symbolic execution to gener-
ate the access formula, which capture all the constraints from the interface inputs to
the suspicious instruction. Then it analyzes the access formula to verify the DUI vul-
nerability and to assess the capability of attackers in controlling the memory space of
the vulnerable partition. DUI Detector reports the verified DUI vulnerabilities together
with their severity to developers, helping them to fix the vulnerable code. Next, we

introduce the key phases of the DUI Detector.

3.2.2 Suspicious Instruction Shortlisting

From the collected execution states, we use data dependency analysis to track the data
flow of the memory address and the data used in memory access instructions. We define
the data dependency analysis as follows: Instruction I is data-dependent on instruction
I if R(Io) N W(I1) # (), where R(I;) is the set of memory locations or registers
read by instruction I; and W (I;) is the set of memory locations or registers written by
instruction I;. The methods used to detect DUIs are given below.

To detect write DUIs, we check for the following conditions for each instruction.
(1) It is a memory write instruction, i.e., instructions that write the data into memory,
like mov, add, push and successful conditional move cmov. (2) The source operand
is derived from the interface inputs, or predictable to attackers. (3) The address of the
destination operand is also derived from the interface inputs.

To detect read DUISs, it is insufficient to check just one single instruction. Other

than the actual memory read operation, it is also necessary to identify the data flow
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offset = API_recv(); // API_recv () receives data from others
value = API_revc();
addr = base + offset;
if (addr < MAX_ADDR)
* addr = value + 100;
value = random(); // random() returns a random value

(o) O, I RO I

Code 3.4: Pseudo code to demonstrate four constraints in the access formula.

from the read operation to output interfaces, as we discuss in Section 3.1. Hence, we

use a two-step approach to identify a read DUIL

1. If it matches the following conditions, we will further check it in step 2: (1) The
instruction reads data from memory and saves the data into registers. Instructions
reading from registers or without saving the data into registers are ignored. (2)
The memory address is derived from the interface inputs.

2. For an instruction selected above, we perform forward slicing on the data flow of
the destination operand (the retrieved data). If the data reaches an output inter-

face, we report it as a potential read DUI.

Our tool generates a list of the suspicious instructions potential vulnerable to DUIs.
However, strong constraints on the interface inputs could significantly limits the attack-
ers’ capability, even making the instruction unexploitable. Hence we need to analyze

each suspicious instruction to confirm the vulnerability and assess attackers’ capability.

3.2.3 Dereference Behavior Analysis

Given a suspicious instruction identified in the previous step, our tool extracts an access
formula to represent the relationship between the interface inputs and the address or data
used in the instruction. The access formula captures all the constraints in the execution
states with respect to the interface inputs. There are four types of constraints in the

access formula as follows. We use the Code 3.4 to demonstrate them.

» Data-Flow Constraints. Data-flow constraints describe the arithmetic relations
between the address and the data in the DUI instruction and the interface inputs.
They are presented as a sequence of arithmetic operations. As in Code 3.4, one

data-flow constraint is that addr is the sum of base and offset.
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* Control-Flow Constraints. Control-flow constraints ensure that the execution
follows the same path as the one recorded in the execution states. We only con-
sider the path constraints related to the interface inputs. Other path constraints
are out of the attacker’s control and are assumed to be satisfied. In Code 3.4, the
control-flow constraint to reach line 5 is that addr is less than MAX_ADDR.

* Memory Space Constraints. To reach the suspicious instruction, all the memory
accesses should be legitimate. Specifically, the code must have the correct write
or read permission of the accessed page. Otherwise, page fault exceptions will be
raised and divert the execution path. This constraint limits the attacker’s capabil-
ity since only a subset of memory space is accessible. In line 5 of Code 3.4, the
memory write address addr has to be writable.

* Data Life-Cycle Constraints. To create an effective attack, the malicious data
(or retrieved data) must be used within its life-cycle. Otherwise, the suspicious
instruction cannot be exploited. For example, if the malicious data written to a
selected location is immediately overwritten by a benign value, the attack does
not have any effect on the victim partition. To capture this constraint, our tool
considers subsequent instructions in order to track the aliveness of the data. In
Code 3.4, the variable value is updated in line 6 and therefore the malicious

value from line 2 has to be used before line 6.

The generated access formula captures all the constraints on the interface inputs
to reach the suspicious instruction and continue the execution. There could be over-
constraints on the input to reach the instruction, as the execution path could be cus-
tomized for a concrete input. For example, the control-flow constraint requires the
same input length if there exists a loop based on the input length. This problem is out
of the scope of this work. We rely on state-of-the-art tools to capture constraints. By
assessing the attacker’s capability by exploiting the instruction, we can determine if the
suspicious instruction is indeed a DUI vulnerability. If so, we report the suspicious

instruction and the attackers’ capability to developers.

3.2.3.1 Attackers’ Capability Assessment

Attackers’ capability is represented as the ability to control the address and the value

in the memory operation. A larger memory range controllable by attackers indicates a
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stronger attackers’ capability. However, due to the constraints on the interface inputs,
not all the malicious inputs lead to a successful attack. The working inputs form a valid
data space, and the attacker’s capability is determined by the size of this space. Our
tool constructs constraint queries to estimate this space size. Specifically, we assign
concrete values or a memory range to the operands of the suspicious instruction, i.e.,
the address or the data. Then these assignments are added to the access formula as new
constraints to form a query. By solving the query using a constraint solver, we get the
answer to the following questions: Q1: Is there any input making the partition follow
the same path to the suspicious instruction when the address or the data in the address
have to be a given value? Q2: Is there any input making the partition follow the same
path to the suspicious instruction when the address or the data have to be within a given
range? Q3: Is it true that for any address or any data in the given range there is an input
making the partition follow the same path to the suspicious instruction? The answer to
the question Q1 indicates attackers’ capability on controlling specific addresses. This is
useful to build real exploits, for example, writing the ROP gadget address to a function
pointer. A negative answer to the question Q2 helps filter out a memory range from
attackers’ capability. While a positive answer to the question Q3 adds the queried range
into attackers’ capability.

We take several query strategies to efficiently answer these questions. These strate-
gies are based on the bit-pattern analysis and the range analysis [117, 127]. Through
these methods, we can estimate the valid memory space controllable by attackers for

each of the suspicious instruction.

* Initial Target Analysis. We first consider the memory page permission to initial-
ize the memory range. For a memory read operation, the target memory location
has to be readable. For a memory write operation, the target memory location
has to be writable. Using this method, the queried memory range is limited to the
readable or writable memory space.

* Bit-Pattern Analysis. Bit pattern analysis uses queries that specify concrete val-
ues on particular bits (or all bits) of the target value [117,127]. An example of
the query is whether the last two bits of the address have to be 10. This gives the
answer to question Q1.

* Range Analysis. The range query identifies whether a particular range is valid [127]
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or not. If all values in the range are valid, we conclude that the queried range is a
valid range. If none is valid, we remove the range from the valid memory space.
If only some values are valid, the query solver will give a concrete valid value.
We use this value to divide the range to two subranges. Then we use the range

query to query both subranges. This query answers question Q2 and Q3.

Finally the report given by DUI Detector includes the identified DUI vulnerabilities,
together with the attackers’ capability obtained by exploiting such vulnerabilities. It
points out all the vulnerable-prone code in the checked partition. This enables security

analysts to focus their efforts on a particular portion of the code.

3.3 Implementation

We built a prototype of DUI Detector on a 32-bit Ubuntu 10.04 system by extending the
BitBlaze [155] platform. The prototype uses STP [91] as the SMT solver to query the

access formula.

3.3.1 Taint Propagation

DUI Detector uses taint analysis to track the data flow of the interface inputs. Data from
the interfaces are bound with the taint information of the source. Taint information has
two aspects: One aspect is the taint attribute, a flag indicating whether a particular
memory byte is tainted or not. Another aspect is the taint record, which contains the
sources of the taint attribute. We use TEMU, the dynamic analysis engine of BitBlaze,
as the base of taint propagation. However, there are several problems when we use
TEMU to build our tool. Next we discuss these problems and present our solutions.
Finer-Gained Taint Record Propagation. Since we need to capture all the exe-
cution constraints, the taint propagation has to be accurate to permit the identification
of all data sources. The normal taint propagation focuses on taint attribute propagation,
and pays less attention on the taint record propagation. For example, for a given in-
struction, TEMU checks all its operands, and copies the taint records of the first tainted
operand to the destination operand. This propagation method loses some taint sources.
For example, in the instruction add %ebx, %eax, if eax and ebx are tainted by

different data sources, the taint sources of ebx get lost. To solve this problem, we in-
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stead identify all the tainted source operands and copy all distinct taint records to the
destination operand. As a result, the taint records for each operand capture all the data
sources used to derive the operand.

1-Level Table Lookup. If a memory read address is tainted, taint analysis has
to decide to propagate the taint to the destination operand or not. Table lookup is a
method to propagate the taint. However, table lookup results in over-tainting problem,
leading to a high false positive. A better tainting method for table lookup is necessary
to capture the read DUI and avoid the over-tainting problem. We observe that as more
table lookups are performed, attackers likely have increasingly less influence over the
destination. As such, we propose the 1-level table lookup: Only propagating the taint for
a single level of memory indexing. When the tainted data retrieved from table lookup
are used as an index again, we will not propagate the taint. Our implementation uses
the most significant bit of the taint attribute to indicate whether it is tainted through
table lookup or not. Note that 1-level table lookup will miss attacks that utilize high-
level table lookup to corrupt memory locations. However, we believe that the benefit
on false positive reduction overweighs the false negative introduced since attacks with
high-level lookup are rare in real-world attacks. With 1-level table lookup, our tool
captures memory read operations that are strongly controlled by attackers, and skips the
weakly-controlled operations.

Taint Propagation for XMM registers. XMM (eXtended Multi-Media) registers
are used to speed up the memory operation (e.g., memcpy), by joining several 4-byte
copies into a single 16-byte operation. TEMU does not support the taint propagation
through XMM registers. When tainted data are copied into an XMM register, the taint
information gets lost. To support the taint propagation, we extend TEMU to correctly

propagate taint to XMM registers and read taint information from XMM registers.

3.3.2 Access Formula Generation

We use VINE [155], the static analysis component of BitBlaze, to generate the formula
for memory access from the trace. As discussed in Section 3.2.3, there are four types of
constraints affecting memory access. However, VINE only generates two constraints,
the data-flow constraint and the control-flow constraint. To bridge this gap, we develop

tools to add additional two constraints into the formula. There are two steps to generate
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the memory space constraints.

1. In the guest OS, we insert a kernel module to detect the module loading and
unloading behaviors. This information is used to estimate the access permission
of each memory page, which is required by the memory space constraints. The
kernel module sends the update information of the loaded and unloaded module to
TEMU. We log such information together with the number of traced instructions
when a behavior happens.

2. Using the log file, we can construct the readable and writable memory ranges for
each instruction. Specifically, we collect all the modules that are still loaded in the
memory for a given instruction. The union of their readable and writable memory
ranges is the valid memory space. We add the memory range as a memory space

constraint to the access formula.

To generate the data life-cycle constraints for a particular instruction, we search for-
ward from the given instruction in the trace to find the first memory write instruction
that overwrites the data at the same address. We call this instruction the update instruc-
tion. The data life-cycle of the data starts from the given instruction, and ends at its

update instruction.

3.4 Evaluation

We evaluated our approach in the following system: The host OS is a 32bit Ubuntu
10.04 system, running on Openstack Cloud with two 2.4GHz vCPUs and 4GB RAM.
The guest OS in TEMU is a 32bit Ubuntu 9.10 system. Next, we present our evaluation

results and then discuss the security implication of our findings.

3.4.1 Efficacy

We applied DUI Detector on privilege-isolated programs to detect DUI vulnerabilities
in protected partitions. We focus on two particular isolation schemes: The isolation
between malicious OS kernels and user space programs [57, 101, 116, 151, 181], and
the isolation between malicious libraries and main programs [85,89,165,168,171]. We

ran several programs on Linux system to get the execution trace, which were written to
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drive the execution through communications between different partitions. DUI Detec-
tor successfully detected read DUI and write DUI vulnerabilities in the protected user
space code and the protected program main code. Further, DUI Detector assesses the
attackers’ capability obtained by exploiting such vulnerabilities. Next we present the

details of these DUI vulnerabilities.

3.4.1.1 User-Kernel Isolation

A few proposals remove the OS kernel from the trusted base of the program execution,
like hardware-based isolation (e.g., Flicker [115]) and hypervisor-based isolation (e.g.,
Overshadow [57]). These isolation schemes are designed to protect the sensitive data in
user-space programs from the malicious kernel, so the kernel have no direct access to
program memory space. Our goal is to detect DUI vulnerabilities inside protected user-
space programs that allow the malicious kernel to corrupt programs’ private user-space

memory.

— Glibc Code Exploitable by brk. A write DUI was detected in the malloc
function, which manages the heap memory for programs. The malloc calls the brk
system call to request a new heap memory and takes the return value as the break value
(the upper bound of data segment). Before looking into the detected DUI, we first

illustrate the logic in malloc handling the return values of brk.

1 addrl = brk(0); // get the current brk value
2 addr2 = brk(argument) ; // request more space
3 x(addrl + 4) = addr2 - addrl; // store the size as metadata

This code snippet calls brk twice to create a heap memory region. The first brk
call in line 1 is used to get the current break value (saved in addrl), which is the start
address of the heap. The second brk call in line 2 is used to request more memory
space and the new break value is stored in addr2. The code in line 3 stores the size
value (which is addr2 — addrl) into the metadata address (which is addr1+4). One of
our tested programs invokes the malloc library function to call brk. In the execution
states, we found two instructions that match the write DUI Pattern 1, as listed in the

following assembly code snippet'.

"We use AT&T assembly format throughout the thesis.
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1 mov %eax, 0x4 (%edx)

3 mov %eax, 0x4(%edi)

For each instruction, both the value and the memory address are derived from the
return values of brk system calls. By manipulating the system call return values, the
malicious kernel can write any value into an arbitrary address in the victim process,
even if the process is protected by encryption. We analyzed the capability of attackers
and found that only the second instruction is exploitable. For the mov instruction on
line 1, the data life-cycle constraints show that the value is immediately overwritten by
another benign value. For the instruction on line 2, the first return value has to be a
multiple of 8. We show the constraints on the return value generated by our tool below,
where the brkn is the nth return value. DUI Detector generated the payloads in order
to exploit this DUI vulnerability. The generated payloads successfully wrote the given

address to the selected stack address.

1 condition( brkl%8 == 0 && brk2>brkl )
2 address = brkl + 0x2718;
3 data = (brk2 - brkl - 0x2718) | 0x1;

To explore other paths, we changed the condition to invalidate one of the constraints.
The following are two conditions that lead to the write DUIs in other paths. The last one
is the scenario of the lago attack [54]. Note that DUI Detector accurately identified the
constraints of Iago attack: The address has to be non-multiple of 8 and the data write to

the memory has to be congruent to 1 modulo 8.

1 condition(brkl%8 != 0 && brkl<brk2<brk3)
2 address : relies on brkl;
3 data : relies on brkl and brk2;

— Glibc Code Exploitable by mmap2. The second DUI vulnerability in Glibc is in
the code handling the mmap?2 system call. The mmap2 system call on Linux is used to
map files or devices into memory in the Linux system. It is widely used by programs
to map large files into memory. From the execution trace, we identified a total of 1,653
suspicious instructions matching write DUI patterns. We further reduced them to 302

based on the attackers’ capability analysis. Analysis of the remaining 302 instructions
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1 condition (brkl%8 !'= 0 && brkl<brk2>brk3)
2 address : relies on brkl;
3 data : relies on brkl and brk3;

reveals that all of them use values derived from the first 3 mmap2 return values. Here
we show the very first instruction among them. This is a write DUI, where the memory

address and the data are derived from the first and the third mmap2 return values.

1 mov %eax, Oxlac(%edi)

Using the queries we discuss in Section 3.2.3, we identified the valid memory space
which the attacker can write values to. For a stack memory range over 0x0BFFF000
to OxOBFFF2FF, we found that the attacker has no control over addresses whose last

four bits are 1100 or 0100.

— cat Exploitable by read and write. The UNIX utility program cat reads
data from the given files, concatenates the content and writes them out to the standard
output file. This behavior results in consecutive file read and write operations. The cat
program we used is a derivative of the BSD cat program?. We identified read DUIs
in the cat code, which can be exploited by malicious kernel to steal program’s private

information. To illustrate the read DUI, we present the pseudo code below.

nr = read(rfd, buf, size);
for (off = 0; nr; nr —= nw, off += nw)
{
nw = write(wfd, buf + off, nr);
if (nw == || nw == -1)
goto error;

NN R W=~

The loop condition nr is fully controlled by the malicious kernel. First, it is initial-
ized by the return value of the read system call on line 1. For each loop, it is updated
by the return value nw of the write call on line 2. nw is also used to advance the
buffer for the next write call. When the kernel is changed to be untrusted, isolation
mechanisms use deep copy to duplicate all system call parameters to a shared mem-
ory between kernel and process [151]. In this case, by manipulating the return value

nw, the malicious kernel drives the process to copy its private data into shared memory

Mttp://www.opensource.apple.com/source/text_cmds/text_cmds—87/cat/
cat.c
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space. With further capability analysis, we find that the attacker has full control over
the value, i.e., the attacker is able to access any memory with the values ranging from

0x00000000 to OXFFFFEFFFEF.

3.4.1.2 Library Isolation

Dynamic shared libraries are linked to software process at the runtime. Since the dy-
namic library lives in the same memory space with the program’s main code, any vul-
nerability in the library is inherited by the program. Memory separation designs [165,
168, 171] provide transparent memory isolation between the main code and libraries.
The goal is to prevent the untrusted libraries from directly accessing the main memory.
However, attackers can still leverage the DUIs in the main code to indirectly access the
main memory. Some work [168] requires sanitization of the untrusted input or return
value. However, they leave the identification of sanitization work to the developers.

DUI Detector provides a complementary tool to such isolation schemes.

— Programs Using 1ibsdl. The Simple DirectMedia Layer (SDL) library provides
programming interfaces to access low lever hardware, like keyboard, screen, audio and
so on. The main program requests an SDL object and performs operation through the
SDL object. For example, the main program can request a screen object, and then invoke
the screen object methods to set display attributes, like colors and fonts. When the
library isolation technique Codejail [168] is used, the SDL library code cannot directly
access the memory of the main code. A monitor module will selectively commit the
memory changes from the library to the main code. However, only isolating memory
with Codejail cannot prevent the memory access from the library to the main memory
through DUIs in the main code — sanitization code is necessary. We write a simple
program that requests a screen object from the SDL library and then sets the color

attribute. The pseudo code of the simple program is shown below.

screen = SDL_SetVideoMode(...); // get framebuffer surface
color = SDL_MapRGB(...); // get a pixel value
pixmeml6 = screen->pixels + x + y % pixelsperline ;

// get pixel address
*pixmeml6 = color; // set the color

DN W=

Our tool detected the write DUI in the main code (on line 5) of this simple program.
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Table 3.1: Performance of the DUI Detector. T1 is the time for trace generation; T2 is
the time to get the access formula; T3 is the time to solve the formula. “Inst. #” is the
number of executed instruction, while “Infl. #” is the number of tainted instructions.
All times are measured in second.

Trusted Part | Untrusted Part | APIs DUI Inst. # | Infl. # T1 T2 T3
user space Linux kernel brk write 168,089 103 21.79 1.70 | 0.18
user space Linux kernel mmap2 write 167,644 | 69,486 21.19 294 | 3.11
cat code Linux kernel read, write | read 2,288,914 684 104.76 | 16.58 | 0.16
main code SDL library SDL APIs | write | 100,424,507 68 | 7574.23 1.52 | 0.10

A malicious SDL library can exploit this DUI vulnerability to corrupt any memory lo-
cation of the main code, even if the main program is protected by memory isolation
schemes. Using attackers’ capability estimation, our tool reports that there is no limi-
tation on the address or value, which means that attackers have full control of the main

code memory through the DUI exploit.

3.4.2 Performance

Table 3.1 shows the performance details of each experiment conducted using our tool.
We can see that our tool is able to analyze and detect a DUI vulnerability in a few
minutes. The time required for the generation of the trace is largely dependent on the
number of instructions that are generated and logged in the trace. On the other hand,
the amount of time required for the generation of the STP formula is very small. For
the STP formula solving, the time required highly varies due to its dependence on the

query inputs, formula and how quickly the STP solver can obtain a solution for us.

3.4.3 Security Implications

Our tool detected DUI vulnerabilities in different program transformation scenarios,
including untrusted kernel isolation and untrusted libraries isolation. In this part, we

discuss the security implications of our findings.

» Simple memory isolation is inadequate to prevent unauthorized memory access.
Although many designs aim to prevent the malicious partition from accessing the
protected memory, our result shows that simple memory isolation cannot com-

pletely stop the unauthorized memory access. DUI vulnerabilities inside the pro-
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tected partition still allow other partitions to access arbitrary protected memory.

* API-review is necessary to provide a secure environment. Since DUI vulnerabili-
ties can be leveraged to mount attacks through interfaces, developers need to pay
special attention to the checking code on interface inputs when the legacy code
is retrofitted into a memory isolation model. More specifically, there is a need to

review the interfaces between trusted and untrusted partitions.

3.5 Discussion

In this section we present the limitation of our work and discuss the possible defense

against the DUI exploits.

Legacy Code Reuse. Legacy code is usually written without least-privilege principle
in mind. Therefore it is prone to inadequate sanitization when adopting a new threat
model. For example, the user space code is written with implicit trust on kernel services,
and thus we can expect attacks like Iago. In fact, the correct strategy is to rewrite the
user space code with sufficient checking when adopting a new threat model. However,
it is a tedious work due to the large code base and the large number of applications.
Instead, developers prefer to reuse existing legacy code, as much as possible, to save
development effort. Our method provides a way to achieve both security and efficiency,
shortening the development cycle and at the same time providing security to split code.
Further, even for the code rewriting, our tool can be used to figure out the critical code

sections that require developers to write careful checking code.

Code Coverage. Since our method analyzes the trace dynamically generated from
one concrete input, it covers the single code path that gets executed during trace gen-
eration. The symbolic execution guarantees that all inputs that triggers the same code
path are covered. It is possible for the program to have other DUI vulnerabilities in
other paths. To cover such code paths to detect other vulnerabilities, we employ an
iterative process. Specifically, after the analysis for one execution path, we invalidate
the path condition in the control-flow constraints and ask the solver to provide an input
that satisfies the invalidated condition [93]. The given input makes the program follow

a new code path. The same analysis is performed on it and this process is repeated until
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no additional new path can be generated. However, this may lead to the path explosion
problem [19]. To mitigate the problem, we only invalidate the conditional branches
that are affected by untrusted input to generate the new path. In our evaluation, we
limit the exploration of different paths to five. Even with this small number, we still
find several DUI vulnerabilities. Further, existing methods to mitigate path explosion,

like [112,157] can also be applied here.

Defense. There are two potential ways to prevent DUI exploits. One is to patch the
program with proper checking. Once a DUI vulnerability has been identified, develop-
ers can mitigate the consequences of the vulnerability by introducing proper checks to
the vulnerable code. Different checks should be used accordingly based on the type of
the interface inputs. For the Glibc brk attack, where the interface inputs are addresses,
the sanitization code needs to make sure that the returned address either equals to the
requested one or points to a newly allocated memory region [101]. For operation coun-
ters (e.g., the return value of the read system call), sanitization code should perform
strict checks on the length, like comparing it with the file size or the buffer size. An-
other method is to use data-flow tracking to dynamically detect the DUI code. This
method does not require DUI detection before real execution. It can detect DUI exploit
at runtime. However, based on existing knowledge, the performance overhead would

be very large, which is usually unacceptable.

3.6 Related Work

Vulnerability Detection. Symbolic execution and dynamic taint analysis are two tech-
niques that are commonly used for vulnerability detection. In symbolic execution, the
program is executed with symbols rather than concrete values. Operations on the inputs
are represented as an expression of the symbols, naturally providing constraints on pos-
sible values of the input after each operation. As a result, symbolic execution [107] has
been extensively used in program testing and vulnerability analysis [38,44,45,120,139].
Dynamic taint analysis is another technique frequently used to detect vulnerabilities. In
taint analysis, attacker-controlled inputs are usually marked with a tag. This tag is
propagated whenever the data is derived from the input. This enables the analyst to

determine the data flow and the attackers’ influence. A series of work has utilized taint
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analysis to detect and analyze vulnerabilities [40,49,183] and malware [83,172]. New-
some et al. [128] proposed using dynamic taint analysis to find bugs. In these methods,
attacks are detected when the tainted data are used in a dangerous way, like jump ad-
dress or system call parameters. Our approach differs in application of these techniques.
In order to detect DUI vulnerabilities, our focus is on detecting certain access pattern
while at the same time considering implicit constraints such as memory constraints. As
such, our approach aims to obtain a better understanding of the vulnerability in addition

to detection.

Privilege Separation in Software Systems. Privilege separation is a way to realize
the principle of least privilege in software designs. It is often achieved by using memory
isolation to protect resources of high-privileged partitions from low-privileged ones. For
examples, Provos [138] retrofitted OpenSSH with a privilege-separated design and other
methods [34,42,106] automatically separate and isolate components within monolithic
legacy programs. Other security solutions proposed new threat models. For exam-
ple, some [57,110, 115] treat the kernel as potentially untrusted and remove it from
the trusted computing base. However, the work [54, 137] shows that just isolating the
components is insufficient as attackers might be able to leverage on poorly designed
legacy interfaces to compromise the isolated components. Our solution complements
this work with a systematic method to detect DUI vulnerabilities when adopting new

isolation schemes.

3.7 Summary

In this work, we present a systematic solution to detect arbitrary memory access vulner-
ability in binary programs during privilege-based transformation. Our approach builds
access formula for a binary using program analysis techniques. The formula is then
utilized to detect the memory access patterns that can be leveraged by attackers to per-
form arbitrary memory accesses. Detailed analysis is also performed to assess the ca-
pability of attackers using such vulnerabilities. We demonstrate the effectiveness and
accuracy of our approach in the evaluation, where we present four case studies of DUI
vulnerabilities in programs utilizing isolation schemes. Finally, we provide the security

implications based on the results of the evaluation.
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Chapter 4

Exploiting Memory Errors with

Data-Flow Stitching

In previous section we detect memory errors during program transformation, where
the execution environment of split components changes. These memory errors (in fact
all memory errors) give malicious parties, like the untrusted kernel, ability to manip-
ulate the behavior of the vulnerable programs to some extent. With such ability, at-
tackers always seek to build exploits to execute arbitrary malicious code, which gives
them the ultimate freedom in perpetrating damage with the victim program’s privi-
leges. Such attacks typically hijack the program’s control flow by exploiting memory
errors. However, control-oriented attacks, including code-injection and code-reuse at-
tacks, can be thwarted by efficient defense mechanisms such as control-flow integrity
(CFI) [15, 180, 182], data execution prevention (DEP) [21], and address space lay-
out randomization (ASLR) [30, 134]. Recently, these defenses have become practi-
cal and are gaining universal adoption in commodity operating systems and compil-
ers [121, 160], making control-oriented attacks increasingly difficult.

However, control-oriented attacks are not the only malicious consequence of mem-
ory errors. Memory errors also enable attacks through corrupting non-control data — a
well-known result from Chen et al. [56]. We refer to the general class of non-control
data attacks as data-oriented attacks, which allow attackers to tamper with the pro-
gram’s data or cause the program to disclose secret data inadvertently. Several recent

high-profile vulnerabilities have highlighted the menace of these attacks. In a recent ex-
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ploit on Internet Explorer (IE) 10, it has been shown that changing a single byte — specif-
ically the Safemode flag — is sufficient to run arbitrary code in the IE process [119]. The
Heartbleed vulnerability is another example wherein sensitive data in an SSL-enabled
server could be leaked without hijacking the control-flow of the application [13].

If data-oriented attacks can be constructed such that the exploited program follows
a legitimate control flow path, they offer a realistic attack mechanism to cause damage
even in the presence of state-of-the-art control-flow defenses, such as DEP, CFI and
ASLR. However, although data-oriented attacks are conceptually understood, most of
the known attacks are straightforward corruption of non-control data. No systematic
methods to identify and construct these exploits from memory errors have been devel-
oped yet to demonstrate the power of data-oriented attacks. In this work, we study
systematic techniques for automatically constructing data-oriented exploits from given
memory corruption flaws.

Based on a new concept called data-flow stitching, we develop a novel solution that
enables us to systematize the understanding and construction of data-oriented attacks.
The intuition behind this approach is that non-control data is often far more abundant
than control data in a program’s memory space; as a result, there exists an opportunity to
reuse existing data-flow patterns in the program to do the attacker’s bidding. The main
idea of data-flow stitching is to “stitch” existing data-flow paths in the program to form
new (unintended) data-flow paths via exploiting memory errors. Data-flow stitching
can thus connect two or more data-flow paths that are disjoint in the benign execution
of the program. Such a stitched execution, for instance, allows the attacker to write out a
secret value (e.g., cryptographic keys) to the program’s public output, which otherwise

would only be used in private operations of the application.

Problem. Our goal is to check whether a program is exploitable via data-oriented
attacks, and if so, to automatically generate working data-oriented exploits. We aim to
develop an exploit generation toolkit that can be used in conjunction with a dynamic
bug-finding tool. Specifically, from an input that triggers a memory corruption bug,
with the knowledge of the program, our toolkit constructs data-oriented exploits.
Compared to control-oriented attacks, data-oriented attacks are more difficult to

carry out, since attackers cannot run malicious code of their choice even after the at-
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tack. Though non-control data is abundant in a typical program’s memory space, due to
the large range of possibilities for memory corruption and their subtle influence on pro-
gram memory states, identifying how to corrupt memory values for a successful exploit
is difficult. The main challenge lies in searching through the large space of memory
state configurations, such that the attack exhibits an unintended data consequence, such
as information disclosure or privilege escalation. An additional practical challenge is
that defenses such as ASLR randomize addresses, making it even harder since absolute

address values cannot be used in exploit payloads.

Our Approach. In this work, we develop a novel solution to construct data-oriented
exploits through data-flow stitching. Our approach consists of a variety of techniques
that stitch data flows in a much more efficient manner compared to manual analysis or
brute-force searching. We develop ways to prioritize the searching for data-flow stitches
that require a single new edge or a small number of new edges in the new data-flow path.
We also develop techniques to address the challenges caused by limited knowledge of
memory layout. To further prune the search space, we model the path constraints along
the new data-flow path using symbolic execution, and check its feasibility using SMT
solvers. This can efficiently prune out memory corruptions that cause the attacker to lose
control over the application’s execution, like triggering exceptions, failing on compiler-
inserted runtime checks, or causing the program to abort abruptly. By addressing these
challenges, a data-oriented attack that causes unintended behavior can be constructed,
without violating control-flow requirements in the victim program.

We build a tool called FLOWSTITCH embodying these techniques, which operates
directly on x86 binaries. FLOWSTITCH takes as input a vulnerable program with a
memory error, an input that exploits the memory error, as well as benign inputs to that
program. It employs dynamic binary analysis to construct an information-flow graph,
and efficiently searches for data flows to be stitched. FLOWSTITCH outputs a working

data-oriented exploit that either leaks or tampers with sensitive data.

Results. We show that automatic data-oriented exploit generation is feasible. In our
evaluation, we find that multiple data-flow exploits can often be constructed from a sin-

gle vulnerability. We test FLOWSTITCH on eight real-world vulnerable applications,
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and FLOWSTITCH automatically constructs 19 data-oriented exploits from eight appli-
cations, 16 of which are previously unknown to be feasible from known memory errors.
All constructed exploits violate memory safety, but completely respect fine-grained CFI
constraints. That is, they create no new edges in the static control-flow graph. All the
attacks work with the DEP protection turned on, and 10 exploits (out 19) work even
when ASLR is enabled. The majority of known data-oriented attacks (c.f. Chen et.
al. [56], Heartbleed [13], IE-Safemode [119]) are straightforward non-control data cor-
ruption attacks, requiring at most one data-flow edge. In contrast, seven exploits we
have constructed are only feasible with the addition of multiple data-flow edges in the

data-flow graph, showing the efficacy of our automatic construction techniques.

Contributions. This work makes the following contributions:

* We conceptualize data-flow stitching and develop a new approach that system-
atizes the construction of data-oriented attacks, by composing the benign data

flows in an application via a memory error.

* We build a prototype of our approach in an automatic data-oriented attack gen-
eration tool called FLOWSTITCH. FLOWSTITCH operates directly on Windows

and Linux x86 binaries.

* We show that constructing data-oriented attacks from common memory errors
is feasible, and offer a promising way to bypass many defense mechanisms to
control-flow attacks. Specifically, we show that 16 previously unknown and 3
known data-oriented attacks are feasible from 8 vulnerabilities. All our 19 con-

structed attacks bypass DEP and the CFI checks, and 10 of them bypass ASLR.

4.1 Problem Definition

4.1.1 Motivating Example

The following example shown in Code 4.1 is modeled after a web server. It loads
the web site’s private key from a file, and uses it to establish an HTTPS connection
with the client. After receiving the input — a file name, the code sanitizes the input

by invoking checkInput () (on line 10). The code then retrieves the file content
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int server () {
char xuserInput, x*regFile;
char *privKey, =*result, output[BUFSIZE];
char fullPath[BUFSIZE] = "/path/to/root/";

privKey = loadPrivKey ("/path/to/privKey") ;
/+ HTTPS connection using privKey =*/

1
2
3
4
5
6
7
8

GetConnection (privKey, ...);
9 userInput = read_socket();
10 if (checkInput (userInput)) {
11 /* user input OK, parse request x/
12 regFile = getFileName (userInput) ;
13 /* stack buffer overflow =*/
14 strcat (fullPath, reqgFile);
15 result = retrieve (fullPath);
16 sprintf (output, "$s:%s", reqgFile, result) ;
17 sendOut (output) ;
18 }

19 }

Code 4.1: Vulnerable code snippet. String concatenation on line 14 introduces a stack
buffer overflow vulnerability.

and sends the content and the file name back to the client. There is a stack buffer
overflow vulnerability on line 14, through which the client can corrupt the stack memory

immediately after the fullPath buffer.

However, there is no obvious security-sensitive non-control data [56] on the stack
of the vulnerable function. To create a data-oriented attack, we analyze the data flow
patterns in the program’s execution under a benign input, which contains at least two
data flows: the flow involving the sensitive private key pointed to by the pointer named
privKey, and the flow involving the input file name pointed by the pointer named
reqgFile, which is written out to the program’s public outputs. Note that in the benign
run, these two data flows do not intersect — that is, they have no shared variables or
direct data dependence between them, but we can corrupt memory in such a way that
the secret private key gets written out to the public output. Specifically, buffer overflow
of the fullPath can make regFile point to the private key. This forces the program
to copy the private key to the output buffer in the sprint £ function on line 16, and
then the program sends the output buffer to the client on line 17. Note that the attack

alters no control data, and executes the same execution path as the benign run.

This example illustrates the idea of data-flow stitching, an exploit mechanism to
manipulate the benign data flows in a program execution without changing its control

flow. Though it is not difficult to manually analyze this simplified example to construct a
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data-oriented attack, real-world programs are much more complex and often available in
binary-only form. Constructing data-oriented attacks for such programs is a challenging

task we tackle in this work.

4.1.2 Objectives & Threat Model

In this work, we aim to develop techniques to automatically construct data-oriented at-
tacks by stitching data flows. The generated data-oriented attacks result in the following

consequences:

G1: Information Disclosure. The attacks leak sensitive data to attackers. Specifi-

cally, we target the following sources of security-sensitive data:

* Passwords and private keys. Leaking passwords and private keys help bypass
authentication and break secure channels established by encryption techniques.

* Randomized values. Several memory protection defenses utilize randomized
values generated by the program at runtime, such as stack canaries, CFI-enforcing
tags, and randomized addresses. Disclosure of such information allows attackers

bypass randomization-based defenses.

G2: Privilege Escalation. The attacks grant attackers the access to privileged appli-

cation resources. Specifically, we focus on the following kinds of program data:

» System call parameters. System calls are used for high-privilege operations, like
setuid (). Corrupting system call parameters can lead to privilege escalation.

* Configuration settings. Program configuration data, especially for server pro-
grams (e.g., data loaded from httpd.conf for Apache servers) specifies criti-
cal information, such as the user’s permission and the root directory of the web

server. Corrupting such data directly escalates privilege.

Threat Model. We assume the execution environment has deployed defense mecha-
nisms against control-flow hijacking attacks, such as fine-grained CFI [15, 129], non-
executable data [21] and state-of-the-art implementation of ASLR. Attackers cannot
mount control flow hijacking attacks. All non-deterministic system generated values,

e.g., stack-canaries or CFI tags, are assumed to be secret and unknown to attackers.
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4.1.3 Problem Definition

To systematically construct data-oriented exploits, we introduce a new abstraction called
the two-dimensional data-flow graph (2D-DFG), which represents the flows of data in a
given program execution in two dimensions: memory addresses and execution time. A
2D-DFG is a directed graph, represented as G = {V, E'}, where V is the set of vertices,
and F is the set of edges. A vertex in V' is a variable instance, i.e., a point in the two di-
mensional address-time space, denoted as (a, t), where a is the address of the variable,
and ¢ is a representation of the execution time when the variable instance is created. The
address includes both memory addresses and register names!, and the execution time is
represented as an instruction counter in the execution trace of the program. An edge (v/,
v) from vertex v’ to vertex v denotes a data dependency created during the execution,
i.e., the value of v or the address of v is derived from the value of v’. Therefore, the
2D-DFG also embodies the “points to” relation between pointer variables and pointed
variables. Each vertex v has a value property, denoted as v.value.

A new vertex v = (a,t) is created if an instruction writes to address a at the exe-
cution time ¢. A new data edge (V/, v) is created if an instruction takes v’ as the source
operand and takes v as a destination operand. A new address edge (V/, v) is created if an
instruction takes v’ as the address of one operand v. Therefore, an instruction may cre-
ate several vertices at a given point in execution if it changes more than one variables,
for instance in the loop-prefixed instructions (e.g., repmov). Note that the 2D-DFG is
a representation of the direct data dependencies created in a program execution under
a concrete input, not the static data-flow graph often used in static analysis. Figure 4.1
shows a 2D-DFG of Code 4.1.

We define the core problem of data-flow stitching as follows. For a program with
a memory error, we take the following parameters as the input: a 2D-DFG G from
a benign execution of the program, a memory error influence I, and two vertices vg
(source) and vr (target). In our example, vg is the private key, shown as (al?, 6) in
Figure 4.1 and v is the public output buffer, shown as (output, 16) in Figure 4.1. Our
goal is to generate an exploit that exhibits a new 2D-DFG G’ = {V’, E'}, where V'

and E’ result from the memory error exploit, and that G’ contains data-flow paths from

'We treat the register name as a special memory address.
2al is the private key buffer address, a concrete value.
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Figure 4.1: 2D-DFG of a concrete execution of Code 4.1. Black edges are data edges,
while grey edges are address edges. For clarity, vertices do not conform to the order on
address-axis (this applies to all figures). Time is represented by line numbers. a1 is the
address of the private key. a2 is the address of user input. a3 is the address of file name.

vg to vy. Let E = E'—FE be the edge-set difference and V' = V' — V be the vertex-set
difference. Then, E is the set of new edges we need to generate to get £’ from E.

The memory error influence I is the set of memory locations which can be written
to by the memory error, represented as a set of vertices. Therefore, we must select V' to
be a subset of vertices in /. To achieve G1 we consider variables carrying program se-
crets as source vertices and variables written to public outputs as target vertices. In the
development of attacks for G2, source vertices are attacker-controlled variables and tar-
get vertices are security-critical variables such as system call parameters. A successful

data-oriented attack should additionally satisfy the following critical requirements:

* R1. Exploit satisfies the program path constraints to reach the memory error,

create new edges and continue the execution to reach the instruction creating vy .

* R2. The instructions executed in the exploit must conform to the program’s static

control flow graph.

4.1.4 Key Technique & Challenges

The key idea in data-flow stitching is to efficiently search for the new data-flow edge
set F to add in G’ such that it creates new data-flow paths from vg to vy. For each edge
(z,y) € E, x is data-dependent on vg and vr is data-dependent on y. We denote the
sub-graph of G containing all the vertices that are data-dependent on vg as the source
flow. We also denote the sub-graph of GG containing all the vertices that v is data-

dependent on as the target flow. For each vertex pair (z, y), where x is in the source
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Figure 4.2: A data-oriented attack of Code 4.1. This attack connects flow of the private
key and flow of the file name, with the new edges (dashed lines). “Attack” arrow shows
the corruption.

flow and y is in the target flow, we check whether (z, v) is a feasible edge of E resulting
from the inclusion of vertices from I. The vertices = and y may either be contained in /
directly, or be connected via a sequence of edges by corruption of their pointers which
are in I. If we change the address to which x is written, or change the address from
which y is read, the value of x will flow to y. If so, we call (x, y) the stitch edge, = the
stitch source, and y the stitch target. For example, in Figure 4.2, we change the pointer
(which is in I) of the file name from a3 (address of the file name) to a1 (address of the
private key). Then the flow of the private key and the flow of the file name are stitched,
as we discuss in Section 4.1.1. In finding data-flow stitching in the 2D-DFG, we face

the following challenges:

* C1. Large search space for stitching. A 2D-DFG from a real-world program
has many data flows and a large number of vertices. For example, there are 776
source vertices and 56 target vertices in one of SSHD attacks. Therefore, the
search space to find a feasible path is large, for we often need heavy analysis to
connect each pair of vertices.

* C2. Limited knowledge of memory layout. Most of the modern operating sys-
tems have enabled ASLR by default. The base addresses of data memory regions,

like the stack and the heap, are randomized and thus are difficult to predict.

The 2D-DFG captures only the data dependencies in the execution, abstracting away
control dependence and any conditional constraints the program imposes along the exe-
cution path. To satisfy the requirements R1 and R2 completely, the following challenge

must be addressed:

* C3. Complex program path constraints. A successful data-oriented attack
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struct passwd { uid_t pw_uid; ... } *pw;

int uid = getuid();
pw—>pw_uid = uid;

printf(...); //format string error
seteuid (0); //set root uid
seteuid (pw—>pw_uid); //set normal uid

SOV WU DE W —

—

Code 4.2: Code snippet of wu—ftpd, setting uid back to process user id.

causes the victim program execute to the memory error, create stitch edges, and
continue without crashing. This requires the input to satisfy all path constraints,

respect the control flow integrity constraints, and avoid invalid memory accesses.

4.2 Data-Flow Stitching

Data-oriented exploits can manipulate data-flow paths in a number of different ways to
stitch the source and target vertices. The solution space can be categorized based on the
number of new edges added by the exploit. The simplest case of data-oriented exploits
is when the exploit adds a single new edge. More complex exploits that use a sequence
of corrupted values can be crafted when a single-edge stitch is infeasible. We discuss
these cases to solve challenge C1 in Section 4.2.1 and 4.2.2. To overcome the challenge
C2, we develop two methods to make data-oriented attacks work even when ASLR is
deployed, discussed in Section 4.2.3. For each stitch candidate, we consider the path
constraints and CFI requirement (C3) to generate input that trigger the stitch edge in

Section 4.3.4.

Figure 4.3: Target flow in the single-edge stitch of wu-ftpd. &arg is the stack address
of setuid’s argument. (a) is the original target flow, where the pw—>pwd_uid has
value 100 and address al. Grey area is the memory influence /. The stitching attack
changes the value at address a1 to 0 in (b).
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StitchAlgo-1: Single-edge Stitch
Input: G: benign 2D-DFG, I: memory influence,
vr: target vertex, Cp: memory error vertex,
X: value to be in V7.value (requirement for stitch edge)
Output: E: stitch edge candidate set
1 E=0
2 TDFlow = dataSubgraph(G, vr) /* only consider data edges */
3 foreach v € V(TDFlow) do
4 if isRegister(v) then
5 L continue /* Skip registers */
6 if 3 (v, V') € E(TDFlow): 3t : v.time < t < v'.time A (v.address, t) € I then
7 L E=FEU{(cp,v)} /* Stitch edge candidate */
/* dataSubGraph(G, v): the largest direct-connected subgraph of G containing v. */
/* “direct-connect” means connected by data edges only, excluding address edges. */
/* V(G): the set of the nodes inside G. E(G): the set of the edges inside G. */
/* isRegister(v): true if v is a register node, false otherwise. */
/* The same meaning applies to StitchAlgo-2. */

4.2.1 Basic Stitching Technique

A basic data-oriented exploit adds one edge in the new edge set E to connect vg with
vr. We call this case a single-edge stitch. For instance, attackers can create a single
new vertex at the memory corruption point by overwriting a security-critical data value,
causing escalation of privileges. Most of the previously known data-oriented attacks
are cases of single-edge stitches, including attacks studied by Chen et al. [56] and the
IE Safemode attack [119]. We use the example of a vulnerable web server wu—-ftpd,
shown in Code 4.2, which was used by Chen et al. to explain non-control data at-
tacks [56]. In this exploit, the attackers utilizes a format string vulnerability (on line
5) to overwrite the security-critical pw—>pw_uid with root user’s id. The subsequent
setuid call on line 9, which is intended to drop the process privileges, instead makes
the program retain its root user privileges. Figure 4.3 (a) and Figure 4.3 (b) show the
2D-DFG for the execution of the vulnerable code fragment under a benign and the ex-
ploit payload respectively. Numbers on time-axis are the line numbers in Code 4.2. The
exploit aims to introduce a single edge to write a zero value from the network input to
the memory allocated to the pw—>pw_id. Note that the exploit is a valid path in the

static CFG.

Search for Single-Edge Stitch. Instead of brute-forcing all vertices in the target flow
for a stitch edge, we propose a method that utilizes the influence set I of the memory

error to prune the search space. The influence set I contains vertices that can be cor-
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rupted by the memory error, like the grey area shown in Figure 4.3. For vertices in
the target flow, attackers can only affect those in the intersection of the target flow and
the influence I. Other vertices do not yield a single-edge stitch and can be filtered out.
Specifically, we utilize three observations here. First, register vertices can be ignored
since memory error exploit cannot corrupt them. Second, the vertex must be defined
(written) before the memory error and used (read) after the memory error. In Figure 4.3
(a), the code reads vertex (&uid, 3) before the memory error and writes vertices (&arg,
9) and the following one after the memory error. Therefore these three vertices are
useless for single-edge stitches. Third, in the memory address dimension, the vertex
address should belong to the memory region of the influence /. In our example, only
vertex (al, 4) falls into the intersection of the target flow and the influence area. We
select this vertex for stitch.

StitchAlgo-1 shows the algorithm to identify single-edge stitch. From the given 2D-
DFG, StitchAlgo-1 gets the target flow 7'D F'low for the target vertex vp. T'D Flow is in
fact the largest connected subgraph of the whole 2D-DFG, containing the given target
vertex vy. For each vertex v inside T'D Flow, the algorithm filters out the register
vertex. Then it checks whether v is written before the memory error and read after the
memory error. If so, it further checks whether v is under the influence of the memory
error. If v passes all checks, we add the edge from memory error vertex to v into E as
one possible solution. We consider the search space reduction due to our algorithm over
a brute-force search for stitch edges. The naive brute-force search would consider the
Cartesian product of all vertices in the source flow and the target flow. In our algorithm,
this search is reduced to the Cartesian product of only the live variables in the source
flow at the time of corruption, and the vertices in the target flow as well as in I. In our

experiments, we show that this reduction can be significant (see Section 4.5.2).

4.2.2 Advanced Stitching Technique

Single-edge stitch is a basic stitching method, creating one new edge. Advanced data-
flow stitching techniques create paths with multiple edges in the new edge set E. A
multi-edge stitch can be synthesized through several ways. Attackers can use several
single-edge stitches to create a multi-edge stitch. Another way is to perform pointer

stitch, which corrupts a variable that is later used as a pointer to vertices in the source

52



Figure 4.4: Two-edge stitch of wu—ftpd. The target flow is pw—>pw_uid’s flow, and
the source flow is the flow of a constant 0. The attack changes the variable pw at &pw
from al to b2. A later operation reads 0 from b2 and pushes it on stack for setuid.
Two edges are changed: one for pointer dereference and another for data movement.

or target flow. Since the pointer determines the address of the stitch source or the stitch
target, corrupting the pointer introduces two different edges: one edge for the new
“points to” relationship and one edge for the changed data flow. We revisit the example
of wu-ftpd shown earlier in Code 4.2, illustrating a multi-edge stitch exploit in it.
Instead of modifying the field pw_uid, we change its base pointer pw to an address of
a structure with a constant 0 at the offset corresponding to the pw_uid. The vulnerable
code then reads 0 and uses it as the argument of setuid, creating a privilege escalation
attack. Figure 4.4 shows the 2D-DFGs for the benign and attack executions. Changing
the value of pw creates two new edges (dashed lines): the grey edge that connects the
corrupted pointer to a new variable it points to, and the black edge that writes the new

variable into setuid argument. The result is a two-edge stitch.

Identifying Pointer Stitches. Our algorithm for finding multi-edge exploits using
pointer stitching is shown in the StitchAlgo-2. The basic idea is to check each memory
vertex in the source flow and the target flow. If it is pointed to by another vertex in the
2D-DFG, we select the pointer vertex to corrupt. The search for stitchable pointers on
the target flow is different from that on the source flow. Specifically, for a vertex v in
the target flow, we need to find an data edge (v/,v) and a pointer vertex vp of v/, and
then change vp to point to a vertex vs in the source flow, so that a new edge (vs, v) will
be created to stitch the data flows. For a vertex v in the source flow, we need to find
an data edge (v,v’) and a pointer vertex vp of v/, and change vp to point to a vertex vt

in the target flow, so that a new edge (v, vt) will be created to stitch the data flows. At

53



StitchAlgo-2: Pointer Stitch

Input: G: benign 2D-DFG, I: memory influence,
vg: source vertex, vr: target vertex,
Cp: memory error vertex
Output: E: stitch edge candidate set
E=0
SrcFlow = subgraph(G, vs) /* both data and address edges. */
TgtFlow = subgraph(G, vr)
SDFlow = dataSubgraph(G, vs) /* only data edges */
T D Flow = dataSubgraph(G, vr)
foreach v € V(TDFlow) do
if isRegister(v) then continue
if 3 (vi € E(I)A (v, V') € TDFlow) : vi.time < v'.time then continue
foreach (vp, v) € E(TgtFlow) — E(TDFlow) do
/* Only consider address edges. */
10 if vp is used to write v then continue
/* Expect data flow from v */
11 foreach vs € V(SDFlow) do
12 if —isRegister(vs) N vs.isAliveAt(vp.time) then
13 L L StitchAlgo-1(G, I, vp, cp, vs.address)

(- I 7 T Ry S

14 foreach v € V(SDFlow) do

15 if isRegister(v) then continue

16 if YV vi € I: v.time < vi.time then continue

17 foreach (vp, v) € E(SrcFlow) — E(SDFlow) do

18 if vp is used to read v then continue

/* Expect data flow into v */

19 foreach vt € V(TDFlow) do

20 if — isRegister(vt) A3(vt, V') € TDFlow : vt.time < vp.time < V'.time then

21 L L StitchAlgo-1(G, I, vp, cp, vt.address)
/* subgraph(G, v): the largest connected subgraph of G, containing v. */
/* Here “connected” means connected by either data edges or address edges. */
/* v.isAliveAt(t): true if v still holds the same value at time t, false otherwise. */
/* Refer StitchAlgo-1 for meanings of other functions. */

the same time, we need to consider the liveness of the stitching vertices. For example,
the source vertex should carry valid source data when it is used to write data out to the
target vertex. Once we select the pointer vertex vp and its value (vt’s or vs’s address),
the last step is to set the value into vp through the memory error exploit. StitchAlgo-2

invokes the basic stitching technique in StitchAlgo-1 to complete the last step.

Our technique uses vertex liveness and the memory error influence I to significantly
reduce the search space. A naive solution to finding pointer stitches would consider all
pairs (vs, vt) where wvs is in the source flow and vt is in the target flow. The search
space will be the Cartesian product of the vertex set in the source flow (denoted as
V(SrcFlow)) and the vertex set in the target flow (denoted as V (T'gt Flow)). In con-
trast, in StitchAlgo-2, if the memory corruption occurs at time ¢1, the vertex used in the

stitch edge from the source flow must be live at ¢1. Similarly, the vertex used in the
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Figure 4.5: Stitch edge selection. The execution starts at time ¢0, and reaches memory
error instructions at time ¢1. Target data is used at time ¢2, just before target vertex Vr.
There are two stitch source candidates (black points in the source flow) and three stitch
destination candidate (black points in the target flow). One of the stitch edge candidates
is shown using the dotted line.

stitch edge from the target flow should be created after 1. We illustrate it in Figure 4.5,
where only the black vertices are candidates. Furthermore, we restrict our search to
the set of vertices whose pointer vertices vp are inside the memory influence as well.
We call the selected vertices from the source flow R-ser. Similarly, we call the ver-
tices selected from the target flow W-set. Our algorithm reduces the search space to the

Cartesian product of the R-set and W -set instead.

R-set = V(SrcFlow) N1, W-set =V (TgtFlow) NI

|SShaive] = |V (SreFlow)| x |V (TgtFlow)]
’SSpointerfstitch’ = ’ R-set | X | W -set ’

Pointer stitch constitutes a natural hierarchy of exploits, which can consist of mul-
tiple levels of dereferences of attacker-controlled pointers. For instance, in a two-level
pointer stitch we can construct an exploit that corrupts a pointer vpo that points to the
pointer vp. This can be achieved by treating vp as the target vertex, another pointer
vp’ holding the intended value (vt’s or vs’s address) as the source vertex and applying
StitchAlgo-2 to change vp. In this case, StitchAlgo-2 is recursively used twice. Simi-
larly, N-level stitch corrupts a pointer vpy of the pointer vp x_,, to make an attack (and
so on), by applying StitchAlgo-2 N times recursively. Note that for a N-level stitch to

/<

work, we need to make sure the source vertex vp, “aligns” with the target vertex vpy

at each level, such that the program dereferences vp, N-1 times to get the vertex vp,
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and dereferences vp/, N-1 time to get the intended value in the exploit.

Pointer stitch is one specific way to implement multi-edge stitches. In principle, it
can be composed to create more powerful exploits, combining several other single-edge
stitches in a “multi-step” stitch attack. In a multi-step stitch, several intermediate data
flows are used to achieve data-flow stitching. Each step can be realized by pointer stitch
or single-edge stitch. Multi-step stitch is useful when direct stitches of the source flow

and the target flow are not feasible.

4.2.3 Challenges from ASLR

Address space layout randomization (ASLR) deployed by modern systems poses a
strong challenge in mounting successful data-oriented attacks since vertex addresses
are highly unpredictable. We develop two methods in data-oriented attacks to address
this challenge: stitching with deterministic addresses and stitching by address reuse.
Note that attackers can use others methods developed for control flow attacks to bypass

ASLR here, like disclosure of random addresses [25, 148].

4.2.3.1 Stitching With Deterministic Addresses

When security-critical data is stored in deterministic memory addresses, stitching data
flows of such data is not affected by ASLR. Existing work [5, 135, 162] have shown
that current ASLR implementations leave a large portion of program data in the deter-
ministic memory region. For example, Linux binaries are often compiled without the
“-pie” option, resulting in deterministic memory regions. We study deterministic mem-
ory size of Ubuntu 12.04 (x86) binaries under directories /bin, /sbin, /usr/bin
and /usr/sbin, and show the results in Table 4.1. Among 1093 analyzed programs,
more than 87.74% have deterministic memory regions. Two hundred and twenty-three
programs have deterministic memory regions larger than 64KB. Inside such memory
regions, there is many security-critical data, like randomized addresses in .got .plt
and configuration structures in .bss. Hence we believe stitch with deterministic ad-
dresses in real-world programs is practical.

We build an information leakage attack against the orzhttpd web server [8] (de-
tails in Section 4.5.4) using the stitch with deterministic addresses. To respond to a

page request, orzhttpd uses a pointer to retrieve the HTTP protocol version string.
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Table 4.1: Deterministic memory region size of binaries on Ubuntu 12.04 x86 system.
Position-independent executables have size 0. Two largest numbers are highlighted for
each directory.

size (KB) | /bin | /sbin | /usr/bin | /usr/sbin | Total
0 21 22 73 18 134

1-8 10 33 150 20 213
8-16 12 17 113 11 153

16 - 32 23 17 147 14 201
32-64 19 22 103 25 169
64 - 128 15 8 66 8 97
128 -256 7 2 35 4 48
256 - 512 3 2 32 3 40
> 512 2 2 32 2 38
Total | 112 125 751 105 | 1093

The pointer is stored in memory. If we replace the pointer value with the address of a
secret data, the server will send that secret to the client. However this requires both the
address of the pointer and the address of the secret to be predictable. In the orzhttpd
example, we find that the address of the pointer is fixed (0x8051164) and choose the
contents of the . got .plt section (allocated at a fixed address) as the secret to leak
out. Figure 4.6 shows two 2D-DFGs for the benign execution and the attack, respec-
tively. With this attack, the content of .got .plt is sent to the attacker, which leads
to an memory address disclosure exploit useful for constructing second-stage control-
hijacking attacks or stealing secret data in randomized memory region. Unlike a direct
memory disclosure attack, here we use the corruption of deterministically-allocated data

to leak randomized addresses.

Identifying Stitch with Deterministic Addresses. We represent the deterministic
memory region as a set ). Our algorithm considers the intersection of D for the ver-
tices in the source flow and the target flow. The previously outlined stitching algorithms

can then be used directly prioritizing the vertices in the intersection with D.

4.2.3.2 Stitching By Address Reuse

If the security-critical data only exists inside the randomized memory region, data-

oriented attacks cannot use deterministic addresses. To bypass ASLR in such cases,
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Figure 4.6: Stitch with deterministic memory addresses of the orzhttpd server. This
attack is the similar to the one in Figure 4.4, except the address of the source vertex and
the pointer’s address of the target vertex are fixed. This attack works with ASLR.

we leverage the observation that a lot of randomized addresses are stored in memory. If
we can reuse such real-time randomized addresses instead of providing concrete address
in the exploit, the generated data-oriented attacks will be stable (agnostic to address ran-
domization). There are two types of address reuse: partial address reuse and complete

address reuse.

Partial Address Reuse. A variable’s relative address, with respect to the module base
address or with respect to another variable in the same module, is usually fixed. Attack-
ers can easily calculate such relative addresses in advance. On the other hand, instruc-
tions commonly get a memory address with one base address and one relative offset
(e.g., array access, switch table). If attackers control the offset variable, they can cor-
rupt the offset with the pre-computed relative address from the selected vertex (source
vertex or target vertex) and reuse the randomized base address. In this way attackers can
access the intended data without knowing their randomized addresses. We show an ex-
ample of a vulnerable instruction pattern, that allows the attacker partial ability to read a
value from memory and write it out without knowing randomized addresses. If attack-
ers control $eax, they can reuse the source base address $es1i in the first instruction,
and reuse the destination base address $edi in the second instruction. Any memory

access instruction with a corrupted offset can be used to mount such reuse attack.

1 //attackers control %eax

2 mov (%esi,%eax,4), %ebx //reuse %esi
14 4 14

3 mov %ecx, (%edi,%eax,4) //reuse %edi
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Complete Address Reuse. We observe that a variable’s address is frequently saved
in memory due to the limitation of CPU registers. If the memory error allows retrieving
such spilled memory address for reading or writing, attackers can reuse the random-
ized vertex address existing in memory to bypass ASLR. For example, in the following
assembly code, if attacker controls $eax on line 1, it can load a randomized address
into $ebx from memory. Then, attacker can access the target vertex pointed by $ebx
without knowing the concrete randomized address. The attacker merely needs to know
the right offset value to use in $eax on line 2, or may have a deterministic $es1i value

to gain arbitrary control over addresses loaded on line 2.

1 //attacker controls %eax

mov (%esi, %eax, 4), %ebx
3 mov %ecx, (%ebx) / mov (%ebx), %ecx
1 struct user_details { uid_t uid; ... } ud;
2 ... //run with root uid
3 ud.uid = getuid(); //in get_user_info ()
4 ...
5 vfprintf(...); //in sudo_debug ()
6 ...
7 setuid(ud.uid); //in sudo_askpass ()
8

Code 4.3: Code snippet of sudo, setting uid to normal user id.

Let us consider a real example of the sudo program [77] that shows how to use such
instruction patterns that permit complete address reuse meaningfully. Code 4.3 shows
the related code of sudo, where a format string vulnerability exists in the sudo_debug
function (line 5). At the time of executing vfprintf () on line 5, the address of the
user identity variable (ud.uid) exists on the stack. The viprintf () function with
format string “% X $n” uses the X'th argument on stack for “%n”. By specifying the
value of X, vfprintf () can retrieve the address of ud.uid from its ancestor’s
stack frame and change the ud . uid to the root user ID without knowing the stack base
address. Figure 4.7 shows the 2D-DFGs for the benign execution and the attack. This

attack works even if the fine-grained ASLR is deployed.

Identifying Stitch by Address Reuse. Memory error instructions for address reuse
stitch should match the patterns we discuss above. For partial address reuse, the memory

error exploit corrupts variable offsets, while for complete address reuse, the memory
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Figure 4.7: Stitch by complete memory address reuse of sudo. The dashed line is the
new edge (single-edge stitch). An address of ud.uid exists on ancestor’s stack frame,
which is reused to overwrite ud.uid.
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Figure 4.8: Overview of FLOWSTITCH. FLOWSTITCH takes a vulnerable program,
an error-exhibiting input and a benign input of the program as inputs. It builds data-
oriented attacks against the given program using data-flow stitching. Finally it outputs
the data-oriented attack exploits.

vuln.
program

Trace logger

benign
input

error exploit can retrieve addresses from memory. Our approach intersects the memory
error influence I with the source flow and the target flow. Then we search from the new
source flow and the new target flow to identify matched instructions, from which we

can build stitch by address reuse with methods discuss above.

4.3 The FLOWSTITCH System

We design a system called FLOWSTITCH to systematically generate data-oriented at-
tacks using data-flow stitching. As shown in Figure 4.8, FLOWSTITCH takes three
inputs: a program with memory errors, an error-exhibiting input, and a benign input of
the program. The two inputs should drive the program execution down the same exe-
cution path until the memory error instruction, with the error-exhibiting input causing a
crash. FLOWSTITCH builds data-oriented attacks using the memory errors in five steps.
First, it generates the execution trace for the given program. We call the execution trace
with the benign input the benign trace, and the execution trace with the error-exhibiting

input the error-exhibiting trace. Second, FLOWSTITCH identifies the influence of the
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memory errors from the error-exhibiting trace and generates constraints on the program
input to reach memory errors. Third, FLOWSTITCH performs data-flow analysis and
security-sensitive data identification using the benign trace. Fourth, FLOWSTITCH se-
lects stitch candidates from the identified security-sensitive data flows with the methods
discussed in Section 4.2. Finally, FLOWSTITCH checks the feasibility of creating new
edges with the memory errors and validates the exploit. It finally outputs the input to
mount a data-oriented attack.

FLOWSTITCH requires that the error-exhibiting input and the benign input follow
the same code path until memory error happens. The reason is that FLOWSTITCH aligns
the error-exhibiting trace and the benign trace to map the memory error instruction into
the benign trace (FLOWSTITCH stitches data flows in the benign trace). Such pairs
of inputs can be found by existing symbolic execution tools, like S2E [59], BAP [39]
and SAGE [94], and fuzzing tools, like AFL [176], BFF [103], SymFuzz [51]. These
tools explore multiple execution paths with various inputs. Before detecting one error-
exhibiting execution, they usually have explored many matched benign executions. Pre-
vious work [98] discussed the method to select compatible benign input with the error
one from a pool of benign inputs, which can be used here to help generate compatible
error trace and benign trace. We plan to integrate FLOWSTITCH with memory error

detection tools to support exploit generation on new memory errors.

4.3.1 Memory Error Influence Analysis

FLOWSTITCH analyzes the error-exhibiting trace to understand the influence I of the
memory errors. It identifies two aspects of the influence: the time when the memory
errors happens during the execution (temporal influence) and the memory range that can
be written to in the memory error (spatial influence). From the error-exhibiting trace,
FLOWSTITCH detects instructions whose memory dereference addresses are derived
from the error-exhibiting input. We call these instructions memory error instructions.
Note that data flows ending before such instructions or starting after them cannot be
affected by the memory error, therefore they are out of the temporal influence.
Attackers get access to unintended memory locations with memory error instruc-
tions. However, the program’s logic limits the total memory range accessible to at-

tackers. To identify the spatial influence of the memory error instruction, we employ

61



dynamic symbolic execution techniques. We generate a symbolic formula from the
error-exhibiting trace in which all the inputs are symbolic variables and all the path
constraints are asserted true. Inputs that satisfy the formula imply that the execution to
memory error instructions with an unintended address?. The set of addresses that satisfy
these constraints and can be dereferenced at the memory error instruction constitute the
spatial influence.

Note that FLOWSTITCH detects memory error instructions in the error trace, but
connects data flows in the benign trace. Therefore we need to map the memory error
instructions into the benign trace. To achieve this, we align the benign trace and the
error trace. The alignment algorithm first generates the dynamic control flow graph
for both trace, then it tries to match the functions starting from the entry point. It
first matches the out-most function regardless of the internal instruction sequence of
the callee function. Then it proceeds to match inner functions. With this method, the
algorithm can tolerate minor execution difference in the callee functions. For example,
memcpy function could have different number of iterations over the copy loop. Our
method can successfully match callers of memcpy regardless of the length of the copy.

Previous work [98, 139] also discussed similar trace alignment techniques.

4.3.2 Security-Sensitive Data Identification

As we discuss in Section 4.1.3, FLOWSTITCH synthesizes flows of security-sensitive
data. There are four types of data that are interesting for stitching: input data, out-
put data, program secret and permission flags. To identify input data, FLOWSTITCH
performs taint analysis at the time of trace generation, treating the given input as an ex-
ternal taint source. For output data, FLOWSTITCH identifies a set of program sinks that
send out the program data, like send () and print £ (). The parameters used in sinks
are the output data. Further, we classify program secret and permission flags into two
categories: the program-specific data and the generic data. FLOWSTITCH accepts user
specification to find out program-specific data. For example, user can provide addresses
of security flags. For the generic data, FLOWSTITCH uses the following methods to au-

tomatically infer it.

* System call parameters. FLOWSTITCH identifies all system calls from the trace,

3This is true if the symbolic formula constructed is complete [95].
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like setuid, unlink. Based on the system call convention, FLOWSTITCH

collects the system call parameters.

* Configuration data. To identify configuration data, FLOWSTITCH treats the
configuration file as a taint source and uses taint analysis to track the usage of the

configuration data.

* Randomized data. FLOWSTITCH identifies stack canary based on the instruc-
tions that set and check the canary (e.g., storing canary in %gs:0x14 on Linux),
and identifies randomized addresses if they are not inside the deterministic mem-

ory region (see below).

Deterministic Memory Region Identification. FLOWSTITCH identifies the deter-
ministic memory region for stitch with deterministic addresses (Section 4.2.3.1). It first
checks the program binary to identify the memory regions that will not be randomized
at runtime. If the program is not position-independent, all the data sections shown in
the binary headers will be at deterministic addresses. FLOWSTITCH collects loadable
sections and gets a deterministic memory set D. This method works on both Linux
and Windows system. FLOWSTITCH further scans benign traces to find all the memory
writing instructions that write data into the deterministic memory set to identify data
stored in such region. If the value written to such region is likely to be an address, the
tool further checks whether the address falls into the deterministic region. The address
outside such region is identified as randomized address. One of our goal is to leak such
address value to bypass randomized for next attack.

Note that based on the functionality of the security-sensitive data, we predefine
goals of the attacks. For example, the attack of setuid parameter is to change it to the
root user’s id 0. For a web server’s home directory string, the goal is to set it to system

root directory.

4.3.3 Stitching Candidate Selection

For identified security-sensitive data, FLOWSTITCH generates its data flow from the
2D-DFG. FLOWSTITCH selects the source flow originated from the source vertex Vg

and the target flow ended at the target vertex V. It then uses the stitching methods dis-
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cussed in Section 4.2 to find stitching solutions. Although any combination of stitching
methods can be used here, FLOWSTITCH uses the following policy in order to produce

a successful stitching efficiently.

1. FLOWSTITCH uses single-edge stitch technique before the multi-edge stitch tech-
nique. After the single-edge stitch’s search space is exhausted, it seeks multi-edge
stitch. FLOWSTITCH stops searching at four-edge stitch in our experiments.

2. FLOWSTITCH considers stitch with deterministic addresses before stitch by ad-
dress reuse. After exhausting the search space of deterministic address and ad-
dress reuse space, FLOWSTITCH continues searching stitches with concrete ad-

dresses shown in benign traces, for cases without ASLR.

4.3.4 Candidate Filtering

To overcome challenge C3, FLOWSTITCH checks the feasibility of each selected stitch

edge candidate. We define the stitchability constraint to cover the following constraints.

* Path conditions to reach memory error instructions;
* Path conditions to continue to the target flow;

* Integrity of the control data;

The first two constraints are control-flow constraints and data-flow constraints, as
we discussed in Section 3.2. Satisfying them guarantees that the execution path will
reach both the memory error and the security-critical code. The last constraint guar-
antees that the execution will not violate the control flow integrity. To achieve the last
constraint, we insert assert into the formula to make sure the control data are pre-
served. FLOWSTITCH generates the stitchability constraint using symbolic execution
tools. The constraint is sent to SMT solvers as an input. If the solver cannot find any
input satisfying the constraint, FLOWSTITCH picks the next candidate stitch edge. If it
exists, the input will be the witness input that is used to exercise the execution path in
order to exhibit the data-oriented attacks. Due to the concretization in symbolic con-
straint generation in the implementation, the constraints might not be complete [95], i.e.,
it may allow inputs that results in different paths. FLOWSTITCH concretely verifies the
input generated by the SMT solver to check if it successfully mounts the data-oriented

attacks on the program.
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4.4 Implementation

We prototype FLOWSTITCH on Ubuntu 12.04 32 bit system. Note that as the first step
the trace generation tool can work on both Windows and Linux systems to generate
traces. Although the following analysis steps are performed on Ubuntu, FLOWSTITCH

works for both Windows and Linux binaries.

Trace Generation. Our trace generation is based on the Pintraces tool provided by
BAP [39]. Pintraces is a Pin [111] tool that uses dynamic binary instrumentation to
record the program execution status. It logs all the instructions executed by the program
into the trace file, together with the operand information. In our evaluation, the traces

also contain dynamic taint information to facilitate the extraction of data flows.

Data Flow Generation. For input data and configuration data, FLOWSTITCH uses the
taint information to get the data flows. To generate the data flow of the security-sensitive
data, FLOWSTITCH performs backward and forward slicing on the benign trace to lo-
cate all the related instructions. It is possible for one instruction to have multiple source
operands. For example, in add %$eax, %ebx, the destination operand %$ebx is de-
rived from $eax and $ebx. In this case, one vertex has multiple parent vertices. As a

result, the generated data flow is a graph where each node may have multiple parents.

Constraint Generation and Solving. The generation of the stitchability constraint
required in Section 4.3.4 is implemented in three parts: path constraints, influence
constraints, and CFI constraints. The stitchability constraint is expressed as a logi-
cal conjunction of these three parts. We use BAP to generate formulas which capture
the path conditions and influence constraints. For control flow integrity constraint, we
implement a procedure to search the trace for all the indirect jmp or ret instruction.
Memory locations holding the return addresses or indirect jump targets are recorded.
The control flow integrity requires that at runtime, the memory location containing con-
trol data should not be corrupted by the memory errors. The stitchability constraint is
checked for satisfiability using the Z3 SMT-solver [81], which produces a witness input

when the constraint is satisfiable.
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4.5 Evaluation

Table 4.2: Experiment environments and benchmarks. # of Attacks gives the num-
ber of attacks generated by FLOWSTITCH, including privilege escalation attacks and
information leakage attacks. FLOWSTITCH generates 19 data-oriented attacks from 8
vulnerable programs.

# of Attacks
ID Vul. Program | Vulnerability Environment (32b)

Priv. | Leak
CVE-2013-2028 [74] nginx stack buffer overflow | Ubuntu 12.04 1 1
CVE-2012-0809 [77] sudo format string Ubuntu 12.04 1 0
CVE-2009-4769 [71] httpdx format string Windows XP SP3 4 1
bugtraq ID: 41956 [146] | orzhttpd format string Ubuntu 9.10 1 1
CVE-2002-1496 [70] null httpd heap overflow Ubuntu 9.10 2 0
CVE-2001-0820 [68] ghttpd stack buffer overflow | Ubuntu 12.04 1 0
CVE-2001-0144 [72] SSHD integer overflow Ubuntu 9.10 2 1
CVE-2000-0573 [79] wu-ftpd format string Ubuntu 9.10 2 1
Total 8 programs 14 5

In this section, we evaluate the effectiveness of data-flow stitching using FLOW-
STITCH, including single-edge stitch, multi-edge stitch, stitch with deterministic ad-
dresses and stitch by address reuse. We also measure the search space reduction using

FLOWSTITCH and the performance of FLOWSTITCH.

4.5.1 Efficacy in Exploit Generation

Table 4.2 shows the programs used in our evaluation, as well as their running environ-
ments and vulnerabilities. The trace generation phase is performed on different systems
according to the tested program®. All generated traces are analyzed by FLOWSTITCH
on a 32-bit Ubuntu 12.04 system. The vulnerabilities used for the experiments come
from four different categories to ensure that FLOWSTITCH can handle different vulner-
abilities. 7 of the 8 vulnerable programs are server programs, including HTTP and FTP
servers, which are the common targets of remote attacks. The other one is the sudo
program, which allows users to run command as another user on Unix-like system. The
last 4 vulnerabilities were discussed in [56] to manually build data-oriented attacks. We

apply FLOWSTITCH on these vulnerabilities to verify the efficacy of our method.

4On Windows XP, ASLR is not enabled. Our attack works if the system does not force to randomize
the .bss section, which is common in current Windows systems.
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Table 4.3: Evaluation of FLOWSTITCH on generating data-oriented attacks. In the At-
tack Description column, L; stands for information leakage attack, while M; represents
privilege escalation attack. Column 3 indicates whether the built attack can bypass
ASLR or not. The “CP” column shows the number of memory error instructions. Trace
size is the number of instructions inside the trace. The last 4 columns show the number
of stitch sources and stitch targets before and after our selection. SrcFlow means source
flow, while TgtFlow stands for target flow.

ASLR Error-exhibiting | Benign # of nodes before # of nodes after
Vul. Apps | Attack Description CpP
Bypass Trace Size Trace Size | SrcFlow | TgtFlow | SrcFlow | TgtFlow
Lo: private key 411437 3 48 3 1
nginx 1 50789
Mo: http directory path 1717182 173 462 1 42
sudo Mp: user id v 1 351988 854371 2083 1 1 1
Lo: admin’s password v 1361761 152 7 152 2
Mp: admin’s password v 1298247 78 120 1 8
httpdx | M7: anon.’s permission v 1 1197657 1233522 78 2 1 1
Ma: anon.’s root directory v 1522672 78 165 1 11
M3: CGI directory path v 1257694 78 480 1 30
Lo: randomized address v 131871 8 28 8 1
orzhttpd 1 84694
Mo: directory path v 131871 368 95 1 19
Mo: http directory path 401285 3 141 2 47
null httpd 2 160844
M7 : CGI directory path 335329 3 144 2 48
ghttpd | Mop: CGI directory path 1 312130 316473 3579 6 1 1
Lo: root password hash 3094592 776 56 97 2
SSHD | Moy: user id 1 38201 674365 1 24 1 1
M7 : authenticated flag 674365 1 2 1 1
Lo: env. variables 1417908 88 5 88 1
wu-ftpd | Mo: user id (single-edge) v 1 328108 1057554 183 2 1 1
M7 : user id (multi-edge) v 1057554 183 1 1 1

Results. Our result demonstrates that FLOWSTITCH can effectively generate data-
oriented attacks with different vulnerabilities on different platforms. The number of
generated data-oriented attacks on each program is shown in Table 4.2 and their details
are given in Table 4.3. FLOWSTITCH generates a total of 19 data-oriented attacks for
eight real-world vulnerable programs, more than two attacks per program on average.
Among 19 data-oriented attacks, there are five information leakage attacks and 14 priv-
ilege escalation attacks. For the vulnerable httpdx server, FLOWSTITCH generates

five data-oriented attacks from a format string vulnerability.

Out of the 19 data-oriented attacks, 16 are previously unknown. The three known
attacks are two uid-corruption attacks on SSHD and wu—ftpd, and a CGI directory

corruption attack on null httpd, discussed in [56]. FLOWSTITCH successfully re-
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produces known attacks and builds new data-oriented attacks with the same vulnerabili-
ties. Note that FLOWSTITCH produces a different ght t pd CGI directory corruption at-
tack than the one described in [56]. Details of this attack are discussed in Section 4.5.4.
The results show the efficacy of our systematic approach.

From our experiments, seven out of 19 of the data-oriented attacks are generated
using multi-edge stitch. The significant number of new data-oriented attacks generated
by multi-edge stitch highlights the importance of a systematic approach in managing the
complexity and identifying new data-oriented attacks. As a measurement of the efficacy
of ASLR on data-oriented attacks, we report that 10 of 19 attacks work even with ASLR
deployed. Among 10 attacks, two attacks reuse randomized addresses on the stack and
eight attacks corrupt data in the deterministic memory region. We observe that security-
sensitive data such as configuration option is usually represented as a global variable in
C programs and reside in the .bss segment. This highlights the limitation of current
ASLR which randomizes the stack and heap addresses but not the .bss segment.

For three of 19 attacks, FLOWSTITCH requires the user to specify the security-
sensitive data, including the private key of nginx, the root password hash and the
authenticated flag of SSHD. For others, FLOWSTITCH automatically infers the security-
sensitive data using techniques discussed in Section 4.3.2. Once such data is identified,

FLOWSTITCH automatically generates data-oriented exploits.

4.5.2 Reduction in Search Space

Data-flow stitching has a large search space due to the large number of vertices in the
flows to be stitched. Manual checking through a large search space is difficult. For
example, in the root password hash leakage attack against SSHD server, there are 776
vertices in source flow containing the hashed root passwords. In the target flow, there
are 56 vertices leading to the output data. Without considering the influence of the
memory errors, there are a total of 43,456 possible stitch edges. After applying the
methods described in Section 4.2, we get the intersection of the memory error influence
I with the stitch source set R-set and the stitch target set W-set. In this way, the number
of candidate edges is reduced from 43,456 to 194, obtaining a reduction ratio of 224.
The last four columns in Table 4.3 give the detailed information of the search space

for each attack. For most of the data-oriented attacks, there is a significant reduction
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Table 4.4: Performance of trace and flow generation using FLOWSTITCH. The unit
used in the table is second, so 1:07 means one minute and seven seconds.

nginx sudo httpdx orzhttpd
Attacks
Lo | My Moy Lo Moy M,y My | Mz | Lo | My
error 0:08 0:35 0:08 0:17
TraceGen
benign | 0:22 | 0:36 | 1:07 | 0:45 | 0:51 | 0:50 | 1:03 | 0:53 | 0:20 | 0:20
error 0:06 1:17 0:12 0:12
Slicing
benign | 2:41 | 0:12 | 3:34 5:56 | 4:44 | 4:52 | 4:45 | 4:47 | 0:24 | 1:04
Total 3:17 | 1:02 | 6:33 7:01 5:55 | 6:02 | 6:08 | 6:00 | 1:13 | 1:53
nullhttpd | ghttpd SSHD wu-ftpd
Attacks avg
Moy | M, Moy Lo My M,y Lo | Mo | M,
error 0:13 0:09 2:35 0:12 0:32
TraceGen
benign | 1:20 | 0:52 | 0:18 9:38 | 5:30 | 5:30 | 0:50 | 0:31 | 0:31 | 1:41
error 0:14 0:12 1:02 0:19 0:26
Slicing
benign | 6:21 | 2:29 | 0:09 | 21:08 | 1:22 | 1:00 | 5:42 | 0:27 | 0:26 | 3:47
Total 8:08 | 3:48 | 0:48 | 34:23 | 10:29 | 10:07 | 7:03 | 1:29 | 1:28 | 6:27

in the number of possible stitches. ghttpd-My achieves the highest reduction ratio
of 21,474 while SSHD-M; achieves the lowest reduction ratio of two. The median
reduction ratio is 183 achieved by wu-ftpd-M;(multi-edge). Given the relatively
large spatial influence of the memory error, most of the reduction is achieved by the

temporal influence of .

4.5.3 Performance

We measure the time FLOWSTITCH uses to generate data-oriented attacks. Table 4.4
shows the results, including the time of trace generation and the time of data-flow col-
lection (slicing). Note that the trace generation time includes the time to execute in-
structions that are not logged (e.g., crypto routines and mpz library for SSHD). As
we can see from Table 4.4, FLOWSTITCH takes an average of six minutes and 27 sec-
onds to generate the trace and flows. Most of them are generated within 10 minutes.
The information leakage attack of SSHD server takes the longest time, 34 minutes and
23 seconds, since crypto routines execute a large number of instructions. From the
performance results, we can see that the generation of data flows through trace slicing
takes up most of the generation time, from 20 percent to 87 percent. Currently, our

slicer works on BAP IL file. We plan to optimize the slicer using parallel tools.
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4.5.4 Case Studies

We present five case studies to demonstrate the effectiveness of stitching methods and

interesting observations.

Sensitive Data Lifespan. A common defense employed to reduce the effectiveness of
data-oriented attacks is to limit the lifespan of security-critical data [56,60]. This case
study highlights the difficulty of doing it correctly. In the implementation of SSHD, the
program explicitly zeros out sensitive data, such as the RSA private keys, as soon as
they are not in use. For password authentication on Linux, get spnam () provided by
glibc is often used to obtain the password hash. Rather than using the password hash
directly, SSHD makes a local copy of the password hash on stack for its use. Although
the program makes no special effort is to clear the copy on the stack, the password on
stack is eventually overwritten by subsequent function frames before it can be leaked.
The developer explicitly deallocates the original hash value using endspent () [3]in
the glibc internal data structures. However, glibc does not clear the deallocated mem-
ory after endspent () is called and this allows FLOWSTITCH to successfully leak the
hash from the copy held by glibc. Hence, this case study highlights that sensitive infor-
mation should not be kept by the program after usage, and that identifying all copies of

sensitive data in memory is difficult at the source level.

Multi-edge Stitch — ghttpd CGI Directory. The ghttpd application is a light-
weight web server supporting CGI. A stack buffer overflow vulnerability was reported
in version 1.4.0 - 1.4.3, allowing remote attackers to smash the stack of the vulnera-
ble Log () function. During the security-sensitive data identification, FLOWSTITCH
detects execv () is used to run an executable file. One of execv () ’s arguments is
the address of the program path string. Controlling it allows attackers to run arbitrary
commands. FLOWSTITCH is unable to find a new data dependency edge using single-
edge stitching, since there is no security-sensitive data on the stack frame to corrupt.
FLOWSTITCH then proceeds to search for a multi-edge stitch. For the program path pa-
rameter of execv (), FLOWSTITCH identifies its flow, which includes use of a series
of stack frame-base pointers saved in memory. The temporal constraints of the memory

error exploit only allow the saved $ebp of the Log () function to be corrupted. Once
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the Log () function returns, the saved %ebp is used as a pointer, referring to all the
local variables and parameters of Log () caller’s stack frame. FLOWSTITCH corrupts
the saved $ebp to change the variable for the CGI directory used in execv () system
call. This attack is a four-edge stitch by composing two pointer stitches.

Chen et al. [56] discussed a data-oriented attack with the same vulnerability, which
was in fact a two-edge stitch. However, that attack no longer works in our experiment.
The ghttpd program compiled on our Ubuntu 12.04 platform does not store the ad-
dress of command string on the stack frame of Log (). Only the four-edge stitching

can be used to attack our ght t pd binary.

Bypassing ASLR - orzhttpd Attacks. The orzhttpd web server has a format
string vulnerability which the attacker can exploit to control almost the whole memory
space of the vulnerable program. FLOWSTITCH identifies the deterministic memory
region and the randomized address on stack under fprintf () frame. The first attack
which bypasses ASLR is a privilege escalation attack. This attack corrupts the web
root directory with single-edge stitching and memory address reuse. The root directory
string is stored on the heap, which is allocated at runtime. FLOWSTITCH identifies the
address of the heap string from the stack and reuses it to directly change the string to /
based on the pre-defined goal (Section 4.3.2). The second attack is an information leak-
age attack, which leaks randomized addresses in the . got . p1t section. FLOWSTITCH
identifies the deterministic memory region from the binary and performs a multi-edge
stitch. The stitch involves modifying the pointer of an HTTP protocol string stored in
a deterministic memory region. FLOWSTITCH changes the pointer value to the address
of .got .plt section and a subsequent call to send the HTTP protocol string leaks the

randomized addresses to attackers.

Privilege Escalation — Nginx Root Directory. The Nginx HTTP server 1.3.9-1.4.0
has a buffer overflow vulnerability [74]. FLOWSTITCH checks the local variables on
the vulnerable stack and identifies two data pointers that can be used to perform arbi-
trary memory corruption. The memory influence of the overwriting is limited by the
program logic. FLOWSTITCH identifies the web root directory string from the configu-

ration data. It tries single-edge stitching to corrupt the root directory setting. The root
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directory string is inside the memory influence of the arbitrary overwriting. FLOW-
STITCH overwrites the value 0x002f into the string location, thus changing the root
directory into /. FLOWSTITCH verifies the attack by requesting /etc/passwd file.

As a result, the server sends the file content back to the client.

Information Leakage — httpdx Password. The httpdx server has a format string
vulnerability between version 1.4 to 1.5 [71]. The vulnerable tolog () function records
FTP commands and HTTP requests into a server-side log file. Note that direct ex-
ploitation of this vulnerability does not leak information. Using the error-exhibiting
trace, FLOWSTITCH identifies the memory error instruction and figures out that there
is almost no limitation on the memory range affected by attackers. From the ht tpdx
binary, FLOWSTITCH manages to find a total of 102MB of deterministic memory ad-
dresses. From the benign trace, FLOWSTITCH generates data flows of the root user
passwords. This is the secret to be leaked out. The FLOWSTITCH generates the neces-
sary data flow which reaches the send () system call automatically.

Starting from the memory error instruction, FLOWSTITCH searches backwards in
the secret data flow and identifies vertices inside the deterministic memory region.
FLOWSTITCH successfully finds two such memory locations containing the “admin”
password: one is a buffer containing the whole configuration file, and another only con-
tains the password. At the same time, FLOWSTITCH searches forwards in the output
flow to find the vertices that affect the buffer argument of send (). Our tool identifies
vertices within the deterministic memory region. The solver gives one possible input
that will trigger the attack. FLOWSTITCH confirms this attack by providing the attack

input to the server and receiving the “admin” user password.

4.6 Related Work

Data-Oriented Attack. Several work [63,129, 160, 166,177,180, 182] has been done
to improve the practicality of CFI, increasing the barrier to constructing control flow
hijacking attacks. Instead, data-oriented attacks are serious alternatives. Data-oriented
attacks have been conceptually known for a decade. Chen et al. constructed data-
oriented attacks to show that data-oriented attack is a realistic threat [56]. However,

no systematic method to develop data-oriented attacks is known yet. In our work, we
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develop a systematic way to search for possible data-oriented attacks. This method

searches attacks within the candidate space efficiently and effectively.

Automatic Exploit Generation. Brumley et al. [41] described an automatic exploit
generation technique based on program patches. The idea is to identify the difference
between the patched and the unpatched binaries, and generate an input to trigger the dif-
ference. Avgerinos et al. [23] discussed Automatic Exploit Generation(AEG) to gener-
ate real exploits resulting in a working shell. Felmetsger et al. [88] discussed automatic
exploit generation for web applications. The previous work focused on generating con-
trol flow hijacking exploits. FLOWSTITCH on the other hand generates data-oriented
attacks that do not violate the control flow integrity. To our knowledge, FLOWSTITCH

is the first tool to systematically generate data-oriented attacks.

Defenses against Data-Oriented Attacks. Data-oriented attacks can be prevented
by enforcing data-flow integrity (DFI). Existing work enforces DFI through dynamic
information tracking [84, 170, 173] or by legitimate memory modification instruction
analysis [50, 178]. However, DFI defenses are not yet practical, requiring large over-
heads or manual declassification. An ultimate defense is to enforce the memory safety
to prevent the attacks in their first steps. Cyclone [105] and CCured [124] introduce
a safe type system to the type-unsafe C languages. SoftBound [122] with CETS [123]
uses bound checking with fat-pointer to force a complete memory safety. Cling [17] en-
forces temporal memory safety through type-safe memory reuse. Data-oriented attack

prevention requires a complete memory safety.

4.7 Summary

In this work, we present a new concept called data-flow stitching, and develop a novel
solution to systematically construct data-oriented attacks. We discuss novel stitching
methods, including single-edge stitch, multi-edge stitch, stitch with deterministic ad-
dresses and stitch by address reuse. We build a prototype of data-flow stitching, called
FLOWSTITCH. FLOWSTITCH generates 19 data-oriented attacks from eight vulnerable
programs. Sixteen attacks are previously unknown attacks. All attacks bypass DEP and

the CFI checks, and 10 bypass ASLR. The result shows that automatic generation of
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data-oriented exploits exhibiting significant damage is practical.
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Chapter 5

Exploiting Memory Errors with

Data-Oriented Programming

Control-hijacking attacks are the predominant category of memory exploits today. The
early generation of control-hijacking attacks focused on code injection, while in recent
years advanced code-reuse attacks, such as return-oriented programming (ROP) and its
variants, have surfaced [33,35,37,52, 149]. In response, numerous principled defenses
for control-hijacking attacks have been proposed. Examples of these include control-
flow integrity (CFI) [15, 130, 160, 163, 180, 182], protection of code pointers (CCFI,
CPI) [109, 113], timely-randomization of code pointers (TASR) [32], memory random-
ization [134], and write-xor-execute (WéX, or data-execution prevention, DEP) [21].
All of these defenses aim to ensure that the control flow of the program remains legiti-
mate (with high probability) under all inputs.

A natural question is to analyze the limits of protection offered by control-flow de-
fenses, and the remaining capabilities of the adversary. In a concrete execution, the
program memory can be conceptually split into the control plane and the data plane.
The control plane consists of memory variables which are used directly in control-flow
transfer instructions (e.g., returns, indirect calls, and so on). In concept, control-flow
defenses aim to ensure that the execution of the program stays legitimate — often by
protecting the integrity of the control plane memory [32, 113] or by directly check-
ing the targets of control transfers [15, 63,129, 130, 160, 180, 182]. However, the data
plane, which consists of memory variables not directly used in control-flow transfer

instructions, offers an additional source of advantage for attackers. Attacks targeting

75



the data plane, which are referred to as data-oriented attacks [56], are known to cause
significant damage — such as leakage of secret keys (HeartBleed) [13], enabling un-
trusted code import in browsers [175], and privilege escalation in servers. However,
data-oriented attacks provide limited expressiveness in attack payloads (e.g., allowing
corruption or leakage of a few security-critical data bytes). We define expressiveness
as the ability to perform various type of computations. The ultimate expressiveness is
Turing-completeness, where any computation can be performed freely. Previous data-
oriented exploits may achieve specific functionality, but fail to provide the capability

for general computations.

In this work, we show that data-oriented attacks with rich expressiveness can be
crafted using systematic construction techniques. We demonstrate that data-oriented at-
tacks resulting from a single memory error can be Turing-complete. The key idea in our
construction is to find data-oriented gadgets — short sequences of instructions in the
program’s control-abiding execution that enable specific operations simulating a Turing
machine (e.g., assignment, arithmetic, and conditional decisions). Then, we find gadget
dispatchers which are fragments of logic that chain together disjoint gadgets in an arbi-
trary sequence. Such expressive attacks allow the remote adversary to force the program
to do its bidding, carrying out computation of the adversary’s choice on the program
memory. Our constructions are analogous to return-oriented programming, wherein
return-oriented instruction sequences are chained [149]. ROP attacks are known to be
Turing-complete because of a similar systematic construction [102, 149]. Thus, our at-
tacks enable data-oriented programming (DOP), which only uses data plane values for

malicious purposes, while maintaining complete integrity of the control plane.

Experimental Findings. To estimate the practicality of DOP attacks, we automate
the procedure for finding data-oriented gadgets in a tool for Linux x86 binaries. In our
evaluation of 9 programs, we statically find 7518 data-oriented gadgets in benign execu-
tions of these programs. 1273 of these are confirmed to be reachable from known proof
of concept exploits for known CVEs. Gadgets offer a variety of computation controls,
such as arithmetic, logical, bit-wise, conditional and assignment operations between
values under attacker’s influence. Chaining of such gadgets is possible with memory

errors if we find dispatchers. We automate the finding of dispatcher loops, such that the
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vulnerabilities could be used to corrupt the control variable. This allows the attacker
to create infinite (or attacker-controlled) repetition. We find 5052 of such dispatcher
loops in x86 applications. To determine the final feasibility of chaining gadgets using
dispatchers (which is a search problem with a prohibitively large space), we resorted
to constructing proof-of-concept exploits semi-manually guided by intuition. We show
3 end-to-end exploits in our case-studies. All of our exploits leave the control-plane
data unchanged, including all code pointers, and control-flow execution always con-
forms to the static control-flow graph (CFG). Further, our exploits execute reliably with

commodity ASLR and DEP implementations turned on.

Implications. In our first end-to-end exploit, we show how DOP attacks result in by-
passing ASLR defenses without leaking addresses to the network. High expressiveness
in DOP attacks also allows the adversary to interact repeatedly with the program mem-
ory, acting out arbitrary functionality in each invocation. Our second exploit uses the
interaction to simulate an adaptive adversary with arbitrary computation power running
inside the program’s memory space (e.g., a bot on the victim server). We probe the ap-
plication over 700 times to effect the final attack! Finally, we discuss how to use DOP to
subvert several CFI defenses which trust the secrecy or integrity of the security metadata
in memory. Specifically, our third exploit changes the permissions of read-only pages
to bypass a specific implementation of CFL. As a consequence, we recommend future
purely control-flow defenses to consider an adversary model with arbitrary computation

and access to memory at the point of vulnerability.

Contributions. In summary, we make the following contributions in this work:

* DOP. We propose data-oriented programming (DOP), a general method to build
Turing-complete data-oriented attacks against vulnerable programs. We propose
concrete methods to identify data-oriented gadgets, gadget dispatchers and a
search strategy to stitch these gadgets.

* Prevalence. Our evaluation of 9 real world applications shows that programs do
have a large number (1273) of data-oriented gadgets reachable from real-world
vulnerabilities, which are required by data-oriented programming operations.

* Practicality. We show that Turing-complete data-oriented attacks for common
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memory errors are practical. 8 out of 9 applications provide data-oriented gad-
gets to build Turing-complete attacks. We build 3 end-to-end data-oriented at-
tacks which work even in the presence of DEP and ASLR, demonstrating the

effectiveness of data-oriented programming.

Our attacks and tools are available at http://huhong—-nus.github.io/advanced-

DOP/.

5.1 Problem

5.1.1 Background: Data-Oriented Attacks

Data-oriented attacks tamper with or leak security-sensitive memory, which is not di-
rectly used in control transfer instructions. Such attacks were conceptually introduced
a decade ago by Chen et al. to show that they can have serious implications [56]. My
previous work provides a general construction method to automatically synthesize sim-
ple payloads to effect such attacks. The attack payloads either writes a target variable
of choice or leaks contents of a sensitive memory region.

Is corruption of a few bytes of memory sufficient to enable Turing-complete attacks
for remote adversaries? In some programs, the answer is yes. Consider web browsers,
which embody interpreters for web languages such as CSS, HTML, JavaScript, and
so on. The data consumed by the interpreter is inherently under the remote attacker’s
control. Further, browsers can import machine code and directly use it, like ActiveX
code. By using a few bytes of corruption, it is possible to cause the web browser to
making it interpret Turing-complete functionality in another website’s origin, or execute
arbitrary untrusted code. Such attacks are known in the wild [10, 175]. However, one
may argue that such attacks apply only to limited applications such as browsers, which
can use process-sandboxing as a second line of defense.

Recently, Carlini et al. showed a more subtle example of “interpreter-like” func-
tionality embedded in many common applications [47]. Their work show that certain
functions, such as print £, take format string arguments and are Turing-complete “in-
terpreters” for the format-string language. Therefore, if a data-oriented attack can allow
the adversary completely control over the format string argument, then the attacker can

construct expressive payloads. However, these examples are specific to certain (4 or
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5) functions such as print £ which permit expressiveness in their format-string lan-
guage. One way to disable such attacks is to limit the expressiveness of these handful
of functions — for instance, the implementation of print £ in Linux [136] ! and Win-
dows [118] ? sanitizes or blocks the use of %n, which severely limits the expressive-
ness of the attack. The question about how expressive are data-oriented attacks arising
from common memory errors in arbitrary pieces of code is not well-understood. Since
data-oriented attacks cannot divert the control flow to arbitrary locations, unlike ROP

attacks [102, 149], the expressiveness is believed to be very limited.

5.1.2 Example of Data-oriented Programming

In fact, data-oriented attacks can offer rich exploits from common vulnerabilities. To
see an example, consider the vulnerable code snippet shown in Code 5.1. The code is
modeled after an FTP server, which processes network requests based on the message
type. It truncates the “STREAM” message (line 10), maintains the total size of bytes
received (line 13) and throttles user requests to a maximum upper limit (line 6). Let
us assume that the code has a buffer overflow vulnerability on line 7, failing to check
the bounds of the fixed-size buffer buf in function readData. As a consequence,
all local variables, including srv, connect_limit, size and type are under the

control of attackers.

1 struct server{ int *cur_max, total, typ;} =*srv;
2 int connect_limit = MAXCONN; int xsize, =*type;
3 char buf [MAXLEN];

4 size = &buf[8]; type = &buf[12];

5 ...

6 while (connect_limit—-) {

7 readData (sockfd, buf); // stack bof

8 if (rtype == NONE ) break;

9 if (»type == STREAM) // condition

10 *size = *(srv->cur_max); // dereference
11 else {

12 Srv->typ = *type; // assignment

13 srv->total += *size; // addition

14 } (following code skipped)

15 1}

Code 5.1: Vulnerable FTP server with data-oriented gadgets.

This code does not invoke any security-critical functions in its benign control-flow,

and the vulnerability just corrupts a handful of local variables. Could the adversary

'A compile-time flag called FORTIFY_SOURCE enables this check.
249n” is disabled by default in Visual Studio.
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1 struct Obj{struct Obj xnext; unsigned int prop;}
2 void updatelist (struct Obj *1list, int addend) {
3 for(; list != NULL; list = list->next)

4 list->prop += addend;

5 1}

Code 5.2: A function increments the integer field of a linked list by a given value. It
can be simulated by chaining data-oriented gadgets in Code 5.1.

stack growth
stack layout ’ buf[] Itypel size ‘connect_limit’ srv ‘
- malicious Ty p aan"] p | q | 0x100 | n8]
input for
oneround | “AAA..AAA" [ m [ p [ ox100 [ p |

Figure 5.1: Malicious input to trigger the loop body in Code 5.2 by stitching data-
oriented gadgets in Code 5.1. The upper side is the stack layout of Code 5.1. Refer
Table 5.1 for details of p, g, m and n.

exploit this vulnerability to simulate an expressive computation on the program state?
A closer inspection reveals that the answer is yes. Consider the individual operations
executed by the program. The line 12 is an assignment operation on memory locations
pointed by two local variables (srv and type), which are under the influence of the
memory error. Line 10 has a dereference operation, the source pointer (srv) for which
is corruptible. Similarly, Line 13 has a controllable addition operation. We can think
of each of these micro-operations in the program as data-oriented gadgets. If we can
execute these gadgets on attacker-controlled inputs, and chain their execution in a se-
quence, then an expressive computation can be executed. Notice that the loop in line
6 to 15 allows chaining and dispatching gadgets in an infinite sequence, since the loop
condition is a variable (i.e., connect _1imit) that is under the memory error’s influ-
ence. We call such loops gadget dispatchers. A sequence of data-oriented gadgets in
Code 5.1 would allow the remote adversary to simulate the function shown in Code 5.2,
which maintains a linked list of integers in memory and increments each integer by a
desired value. Table 5.1 illustrates how the code in the loop body gets simulated with the
malicious input in Figure 5.1. Attackers can repeatedly send the same input sequence

to implement the updateList function in Code 5.2.

This data-oriented attack shows subtle expressiveness in payloads and prevalence:
with a single memory error, it re-interprets the vulnerable server as a virtual CPU, to

perform an expressive calculation on behalf of attackers. It does not require any specific
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Table 5.1: Simulating the loop body in Code 5.2 with the data-oriented gadgets in
Code 5.1. In column “Simulated Instr.”, highlighted instructions are useful for the sim-

ulation, while other instructions are side effects of the attack.

Overflow | Executed Instr. (Code 5.1) Simulated Instr. (Code 5.2)
type <~ p | if(*type == NONE) break; if(list == NULL) break;
size <— q srv->typ = *type; srv = list;
Srv <— n-8 srv->total += *size; list->prop += addend;
type <— m | if(*type == NONE) break; if(list == NULL) break;
size <— p if(*type == STREAM) if(list == STREAM)
SIV < p *size = *(srv->cur-max); | list = list->next;

p — &list; q — &addend; m — &STREAM; n - &srv

security-critical data or functions to enable such attack. The control flow conforms to

the precise CFG.

5.1.3 Research Questions

In this work, we aim to answer the following questions about data-oriented attacks:

* P1: How often do data-oriented gadgets arise in real-world programs? How often

do gadget dispatchers exist?

» P2: Is it possible to chain gadgets for a desired computation? Can attackers build

Turing-complete attacks with this method?

* P3: What is the security implication of this attack method for current defense

mechanisms?

5.2 Data-Oriented Programming

We illustrate the idea behind a general technique called Data-Oriented Programming

(DOP) that can simulate Turing-complete computations by exploiting a memory error.

5.2.1 DOP Overview

Data-oriented programming is a technique that allows the attacker to simulate expres-

sive computations on the program memory, without exhibiting any illegitimate control

81



Table 5.2: MINDOP language. To simulate (conditional) jump, data-oriented gadget
changes the virtual input pointer (vpc) accordingly.

Semantics Expressions in C | Data-Oriented Gadgets in DOP
arithmetic / logical | a op b *p Op *Q
assignment a=> *p = *Qq
load a = *b *p = **Q
store *a = b **p = *g
jump goto L vpc = &input
conditional jump if a goto L vpc = &input if *p
p — &a; q — &b; op — arithmetic / logical operation

flow with respect to the program CFG. As shown in Section 5.1.2, the key is to manip-
ulate non-control data such that the executed instructions do the attacker’s bidding. In
order to give a concrete and systematic construction, we define a simple mini-language
called MINDOP with a virtual instruction set and virtual register operands, in which
the attacker’s payload can be specified. We show how MINDOP can be simulated by
small snippets of x86 instructions that are abundant in common real-world programs
on Linux, as our empirical evaluation in Section 5.4 confirms. MINDOP is Turing-

complete, which we establish in Section 5.2.4.

The MINDOP language (shown in Table 5.2) has 6 kinds of virtual instructions,
each operating on virtual register operands. The first four virtual instructions include
arithmetic / logical calculation, assignment, load and store operations. The last two vir-
tual operations, namely conditional and unconditional jumps, allow the implementation
of control structures in a MINDOP virtual program. Each virtual operation is simulated
by real x86 instruction sequences available in the vulnerable program, which we call
data-oriented gadgets. The control structure allows chaining of gadgets, and the x86
code sequences that simulate the virtual control operations are referred to as gadget dis-
patchers. None of the gadgets or dispatchers modify any code-pointers or violate CFI in
the real program execution. We next explain each virtual operation and show concrete

real-world gadgets that simulate them.
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5.2.2 Data-Oriented Gadgets

Virtual operations in MINDOP are simulated using concrete x86 instruction sequences
in the vulnerable program execution. Such instruction sequences or gadgets read inputs
from and write outputs to memory locations which simulate virtual register operands in
MINDOP. Hardware registers are not a judicious choice for simulating virtual registers
because the original program frequently uses hardware registers for its own computa-
tion. Gadgets are scattered in the program logic, within the legitimate CFG of the pro-
gram. As a result, between two gadgets there may be several uninteresting instructions
which may clobber hardware registers and the memory state outside of the attacker’s
control. Therefore, in MINDOP we implement virtual registers with carefully-chosen

memory locations (not hardware registers).

Conceptually, a data-oriented gadget simulates three logical micro-operations: the
load micro-operation, the intended virtual operation’s semantics, and the final store
micro-operation. The load micro-operation simulates the read of the virtual register
operand(s) from memory. The store micro-operation writes the computation result back
to a virtual register. The operation’s semantics are different for each gadget. A num-
ber of different x86 instruction sequences can suffice to simulate a virtual operation.
The x86 instruction set supports several memory addressing modes, and as long as the
order of the micro-operations is correct, different sequences can work. As a concise ex-
ample, the x86 instruction add %eax, (%ecx) performs all three micro-operations
(load, arithmetic and store) in a single x86 instruction. We later provide other gadget

implementations as well.

Data-oriented gadgets are similar to code gadgets employed in return-oriented pro-
gramming (ROP) [149], or in jump-oriented programming (JOP) [35]. They are short
instruction sequences and are connected sequentially to achieve the desired functional-
ity. However, there are two differences between data-oriented gadgets and code gadgets.
First, data-oriented gadgets require to deliver operation result with memory. In contrast,
code gadgets can use either memory or register to persist outputs of a gadget. Second,
data-oriented gadgets must execute in at least one legitimate control flow, and need not
execute immediately one after another. In fact, they can be spread across several ba-

sic blocks or even functions. In contrast, code gadgets need not execute in any benign
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Table 5.3: Example data-oriented gadget of addition operation. The first row is the C
code of the gadget, and the second row is the corresponding assembly code.

C Code srv->total += *size;

1 mov (%esi), %ebx //load micro-op
ASM Code 2 mov 0x4 (%edi), %eax //load micro-op
3 add %ebx, %eax //addition

4 mov %eax, 0x4(%edi) //store micro-op

control-flow path of the program, and may even start at invalid instruction boundaries.
Data-oriented gadgets have more stringent requirements than code gadgets in general.

However, we show that such gadgets exist with examples from real-world applications.

Simulating Arithmetic Operations. Addition and subtraction can be simulated using
a variety of x86 instructions sequences that we find empirically. Table 5.3 shows one
example of addition gadget with C and the assembly representation. This gadget is
modeled from the real-world program ProFTPD [9]. In the assembly representation,
the code in line 1 and line 2 constitute the load micro-operation. The code in line 3
implements the addition, and line 4 is the store micro-operation.

With addition over arbitrary values, it is possible to simulate multiplication effi-
ciently if the language supports conditional jumps. MINDOP supports conditional
jumps which allow to check if a value is smaller / greater than a constant. To see
why this combination is powerful, note that we can compute the bit-decomposition of
a finite-size integer. To compute the most significant bit of a, we can add a to itself
(equivalently left-shifting it) and conditionally jump based on the carry bit. Proceeding
by repetition, we can obtain the bit-decomposition of a. With bit-decomposition, simu-
lating a multiplication a-b reduces to the efficient shift-and-add procedure, adding a to
itself in each step conditioned on the bits in b. Converting a bit-decomposed value to
its integer representation is similarly a multiply-and-add operation over powers of two.

Bit-wise operations are simply arithmetic on the bit-decomposed versions.

Simulating Assignment Operations. In MINDOP, assignment gadgets read data
from one memory location and directly write to another memory location. In this case,

we can skip the load section of the destination operand. The C code and ASM code of
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Table 5.4: Example data-oriented gadget of assignment operation.

C Code srv->typ = *xtype;

1 mov (%esi), %ebx // load micro-op
ASM Code 2 mov %ebx, %eax // move

3 mov %$eax, 0x8(%edi) // store micro-op

Table 5.5: Example data-oriented gadget of dereference operation. The first row gives
three examples. The second row shows the assembly code of the first one.

C Code LOAD1l: *size = x(srv—->cur_max);
LOAD2: memcpy (dst, #*src_p, size);

STORE: memcpy (xdst_p, src, size);

ASM Code | (of LOAD1I)

1 mov (%esi), %ebx // load micro-op
2 mov (%ebx), %eax // load
3 mov %$eax, (%edi) // store micro-op

an assignment gadget is shown in Table 5.4.

Simulating Dereference (Load / Store) Operations. The load and store instructions
in C require memory dereferences, which take one register as address and visits the
memory location for reading or writing. In data-oriented programming, registers are
‘simulated by memory, therefore the memory dereference is simulated by two mem-
ory dereferences: the first memory dereference to simulate the register access, and a
second memory dereference with the first dereference result (the register value) as the
address. As shown in Table 5.2, the memory dereference «b in the load instruction in
C is represented by *xg, where g is the address of b, g is the value of b, and x*xg
is the final memory value xb. A similar representation is used in the store gadget. We
show two examples of load gadgets and one example of a store gadget in Table 5.5 in C
representation, and the assembly representation of the first load gadget. As we can see
from the assembly code, there are still three sections in load / store gadgets, with the

semantics on memory dereference with loaded operands.
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Figure 5.2: The design model of DOP in MINDOP. The gadget dispatcher includes a
loop and a selector. The loop keeps the program passing by the selector and various
data-oriented gadgets. For each round, the selector is controlled by the memory error to
activate particular data-oriented gadgets.

5.2.3 Gadget Dispatcher

Various gadgets can be chained sequentially by gadget dispatchers to enable recursive
computation. Gadget dispatchers are sequences of x86 instructions that equip attackers
with the ability to repeat gadget invocations and, for each invocation, to selectively
activate specific gadgets. One common sequence of x86 instructions that can simulate
gadget dispatchers is a loop, which iterates over computation that simulates gadgets and
should have a selector in it. Each iteration executes a subset of gadgets using outputs
from gadgets in the previous iteration. To direct the outputs of one gadget in iteration
7 into the inputs to a gadget in iteration ¢ + 1, the selector changes the load address of
iteration ¢ + 1 to the store addresses of iteration . The selector’s behavior is controlled
by attackers through the memory error. In our running example in Code 5.1, line 6
and 7 in the loop constitute a dispatcher. The selector on line 7 is the memory error
itself, which repeatedly corrupts the local variables to setup the execution of gadgets
in that iteration. The corruption is done in a way that it enables only the gadgets of
the attacker’s choice. These gadgets take as input the outputs of the previous round’s
gadget by selectively corrupting operand pointers. The remaining gadgets may still
get executed, but their inputs and outputs are set up such that they behave like NOPs
(operating on unused memory locations). Figure 5.2 shows the design model of data-
oriented programming in MINDOP. The left part is the gadget dispatcher inside the
vulnerable program, which is corruptible by the memory error; the solid gadgets are

activated in iteration ¢ and the gray gadgets are executed like NOPs.

It remains to explain in iteration ¢, how to selectively activate a particular gadget

in that iteration and whether the simulation should continue to iteration 7 + 1. Our
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running example in Code 5.1 shows a scenario where the attacker can “interact” with the
program by repeatedly corrupting program variables at line 7 using a buffer overflow.
This attack is an interactive attack, where the attacker can prepare the memory state
at the start of loop iteration ¢ in a way that the desired gadget works as required and
other gadgets operate on unused memory. Let M be the state of memory for executing
gadget j selectively. In an interactive attack, the attacker can corrupt local variables to
configure M to execute j in that round, and provide multiple rounds of such malicious
inputs to perform an expressive computation. When the attacker wishes to terminate the
loop, it can corrupt the loop condition variable to stop.

Another class of DOP attacks are non-interactive, whereby the attacker provides the
entire malicious input as a single data transmission. In such a scenario, all the memory
setup and conditions for deciding loop termination and selective gadget activation need
to be encoded in a single malicious payload. To support such attacks, MINDOP has
two virtual operations that enable conditional chaining of operations, or virtual jumps.
The basic idea is as follows: the attacker provides the memory configuration M; nec-
essary for each gadget j to be selectively executed in a particular iteration in the input
payload. In addition, it keeps a pointer called the virfual PC which points to the desired
configuration M; at the start of each iteration. It suffices to corrupt only the virtual
PC, so that the program execution in that iteration operates on the configuration M.
To decide how to switch to M}, in the next iteration, MINDOP provides virtual opera-
tions that set the virtual PC, conditionally or unconditionally. The dispatcher loop can
be conditionally terminated by using a specific memory configuration M,,;; which sets
the loop condition variable appropriately. We provide example gadgets that simulate

such virtual operations below.

Simulating Jump Operations. The key here is to identify a suitable variable to im-
plement a virtual PC which can be corrupted in each loop iteration. One example of
such a gadget is the Code 5.3 taken from the real ProFTPD program [9]. There is a
memory pointer pbuf->current that points to the buffer of malicious network in-
put. In each loop iteration, the code reads one line from the buffer and processes it in

the loop body — thus the pointer is a useful candidate to simulate a virtual PC. To sim-

3 Although ProFTPD provides an interactive attack mode, it also allows non-interactive attack with this
jump gadget.
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void cmd_loop (server_rec xserver, conn_t #*c) {
while (TRUE) {
pr_netio_telnet_gets (buf, ..);
cmd = make_ftp_cmd (buf, ...);
pr_cmd_dispatch(cmd); // dispatcher
}
}
char *pr_netio_telnet_gets(char  buf, ...) {
while (xpbuf->current!=’'\n’ && toread>0)
*pbuf++ = xpbuf->current++;

— O 0 00 IO\ R W~

—

Code 5.3: Example data-oriented gadget of jump operation.

ulate an unconditional jump, attackers just prepare the memory configuration to trigger
another operation gadget (e.g., addition, assignment) to change the value of the virtual
PC. For example, if attackers want the MINDOP program to jump from operation ¢ to j,
they just need to prepare the memory configuration Mj, after M;, so that the operation k
will change the virtual PC to point to M;. Furthermore, there are two ways to simulate
a conditional jump. One case is that reading the memory configuration with virtual PC
is conditional. Attackers just use operation £ to set the proper variable as the reading
condition. Another case is that the operation k’s execution conditionally depends on a
data variable.

The virtual PC in non-interactive mode requires a dedicated space for malicious
input and a controllable input pointer. In Section 5.4 we show the details of the identified
virtual PCs in real-world programs. Note that interactive attack model does not require
a virtual PC as attackers can dynamically decide the next gadget based on the network

message received from the victim program in each iteration.

5.2.4 MINDOP is Turing-Complete

To show that MINDOP is Turing-complete, we show how the classical construction
of a Turing machine can be simulated in MINDOP. A Turing machine M is a tuple

(@, q0,%, 00,6) where,

(Q is a finite set of states,

qo is a distinguished start state such that gg € )

3. is a finite set of symbols

— 0y is a distinguished blank symbol such that oy € ¥

J is a transition table mapping a partial function @ x ¥ +— X x {L, R} X Q
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MOV tape_head, temp

STORE input_0, temp ;start writing input
ADD temp, 1

STORE input_1, temp

STORE input_n, temp ;jend writing input

0N N B W~

LOAD tape_head, S_0 ;init S_0O
MOV g 0, g_cur ;init g_cur
9 MOV TT_base, address ;start writing trans tab
10 MOV temp, TT_base
11 STORE value_0, temp
12 ADD temp, 1
13 STORE value_1, temp
14 ADD temp, 1
15 ....
16 STORE value_n, temp ;end loading trans tab

Code 5.4: Data-oriented gadget sequence to initialize the Turing Machine.

Representation. In the context of DOP, we set-up the following data structures in the
victim program’s memory to represent our Turing Machine: A g, to hold the current
state, where ¢, 1S @ member of set of all possible states ((J). A pointer tapepeqq to
track the cell on the tape containing the current symbol S, where S¢,, is a member
of set of all possible symbols (¥). Note that since the tape is linear, tapepeqq — 1 points
to left part of the tape w.r.t. current position, and tapeje.q + 1 points to the right part to
the tape. A pointer 77}, to access a two-dimensional array that stores the transition
table. The transition table uses the current state ¢.,, and the current symbol S, as
indexes. Pointers ¢pext, Sneat, I hold the next state, next symbol and the movement

direction (left or right) respectively.

Simulating Steps of A Turing Machine. In the first step of the attack, we invoke the
memory gadgets to load the input and transition table into the program memory. We
also initialize Geyr to go and tapepeqq to Seyr. For achieving this, the attacker crafts a
payload which will execute the sequence of operations shown in Code 5.4. This requires
three basic types of gadgets: assignment (MOV), dereference (LOAD and STORE) and
addition (ADD).

Once the attacker sets up the Turing machine, the next aim is to execute the machine
with the provided input on the tape. The classical Turing machine step comprises of
four sub-steps: (a) read the current tape symbol (b) use the symbol and the state to
consult the transition table and get the next state and symbol (c) write the new symbol

to the tape and update the state (d) move the tape head to left or right. Code 5.5 shows
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Table 5.6: Transition table for a Turing machine that shifts the binary input by one bit
(equivalent to SHL instruction).

2 Seur =0 Seur =1 Seur = 00
Q Gnet | Snat | D | Qnat | Snzt | D | @nat | Snet | D
qo q1 0 1 q1 1 1 Qo oo 1
Q1 q 0 1 q1 1 1 q2 0 0
q2 q3 0 1 q3 1 1 q3 oo 1
q3 HALT - - | HALT - - | HALT - -

the sequence of gadgets that should be chained together to simulate such a step in the
attacker’s Turing machine. Note that it is a fixed chain of gadgets only comprising of

assignment, dereference and addition operations.

Accessing Transition Tables. Each step in the machine consults the transition table
by using the current state and the current tape symbol. We place our transition table
in the memory in such a way that the comparison operation to search the transition
table is folded into a direct lookup in a two-dimensional array. Specifically, we use the
addition gadget to first calculate the offset in the transition table. This calculation is
done dynamically based on the current symbol and state. Once we obtain the offset, we
use it to lookup the next state and symbol. Next, we update the current state, write the
new symbol, and move the tape head. One example of transition table for simulating a
Turing machine that shifts the given input by one bit is shown in Table 5.6. The attacker
aims to carry out all the above sub-steps repeatedly until the Turing machine reaches
the final or halt state. When the machine does reach a halt state, the lookup-table can
encode a specific output symbol to terminate. For instance, the output symbol could

terminate the dispatcher loop to proceed with the original program execution.

Putting It All Together. To cascade multiple Turing machine steps, the attacker has to
ensure that the victim program’s dispatcher loop does not exit. Line 14-16 in Code 5.5
show one possible way to achieve this by incrementing the vulnerable program’s loop
counter variable at the end of every step in the Turing machine. Depending on the
nature of the gadget dispatcher in the program, the attacker can chose alternative ways
to achieve the same. In order to successfully execute any arbitrary computation in

the vulnerable program’s memory, the attacker constructs a payload such that it first
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1 LOAD vptr, s_cur ;read from tape
2 MOV TT_base, temp

3 ADD temp, g_cur ;get the row

4 LOAD temp, temp

5 ADD temp, s_cur ;get the column
6 LOAD temp, TT

7 LOAD TT, g_cur ;set the new state
8 ADD TT, 1

9 LOAD TT, s_cur

10 aADD TT, 1

11 LOAD TT, D

12 STORE s_cur, tape_head ;write to tape
13 ADD tape_head, D ;move the head
14 MOV loop_counter, temp

15 ADD temp, 16

16 MOV temp, loop_counter

Code 5.5: Gadget sequence to simulate one step in the Turing Machine.

executes the gadgets for initialization and then keeps pumping the payload to execute
machine step gadgets repeatedly until the victim program terminates. Thus, we prove
that if the program has three stitchable gadgets for assignment, dereference and addition

within a dispatcher loop, then it is possible to mount Turing-complete DOP attacks.

5.3 DOP Attack Construction

Constructing DOP attacks against a program requires a concrete memory error and
specification of the malicious behavior. Our analysis first identifies program gadgets
and dispatchers to simulate MINDOP operations, and then we synthesize a malicious

input to execute MINDOP operations exploiting an existing concrete memory error.

5.3.1 Challenges

Though the concept of data-oriented programming is intuitive, it is challenging to con-
struct data-oriented attacks in real-world programs. Unlike in ROP, where attackers
completely harness the control flow, DOP is constrained by the application’s original

control flow. Following challenges arise in constructing DOP attacks:

* Data-oriented gadget identification. To perform arbitrary computations, we
need to find data-oriented gadgets to simulate basic MINDOP operations. How-
ever, most of the data-oriented gadgets are scattered over a large code base, which
makes manual identification difficult. Further, a useful gadget has to satisfy par-

ticular requirements. We use static analysis as an aid in identifying these gadgets.
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Algorithm 3: Data-oriented gadget identification.
Input: G:- the vulnerable program
Output: S:- data-oriented gadget set
1 S=0;
2 FuncSet = getFuncSet(G) /* getFuncSet(G): the set of functions in the program. */
3 foreach f¢c FuncSet do
4 cfg = getCFG(f) /* getCFG(f): the control flow graph (CFG) of the function. */
5 for instr = getNextInstr(cfg) do /* getNextInstr(cfg): next instruction in CFG. */
6 if isMemStore(instr) then /* isMemStore(instr): true if the instr writes memory. */
7 gadget = getBackwardSlice(instr, f) /* the backward slice of instr in f. */
8 input = getIlnput(gadget) /* getlnput(gadget): the input of the gadget. */
9 if isMemLoad(input) then /* true if the input is loaded from memory */
10 S =S U {gadget}
/* The same meaning applies to Algorithm 4. */

* Gadget dispatcher identification. Our gadget dispatcher requires a loop with
various gadgets and a selector controlled by the memory error. But it is possible
to have the selector and gadgets inside the functions called from the loop body.
We should take such cases into consideration to identify all dispatchers.

» Data-oriented gadget stitching. The reachability of gadgets depends on con-
crete memory errors. We need to find malicious input that makes the program
execute selected gadgets with the expected addresses and order. During exploit,
we avoid corrupt control data in the memory. Since data-oriented programming

corrupts substantial memory locations, we also need to avoid program crashes.

Next, we discuss our techniques to address the challenges in identifying data-oriented

gadgets, gadget dispatchers and stitching them for real-world attacks.

5.3.2 Gadget Identification

A useful data-oriented gadget needs to satisfy the following requirements:

* MINDOP semantics. It should have instructions for the load micro-operation,
the store micro-operation, and others simulating semantics of MINDOP, as we

discuss in Section 5.2.2.
* Gadget internal order. The three micro-operations should appear in the load-

operation-store order, and this correct order should show up in at least one legiti-

mate control flow.

We perform static data-flow analysis to aid the identification of such data-oriented

gadgets and generate a set of over-approximated gadgets verifiable by manual / dynamic
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analysis. We compile the program source code into LLVM intermediate representa-
tion (IR) and perform our analysis on LLVM IR. LLVM IR provides more program
semantics than binary while avoiding the parsing of program source code. It also al-
lows language-agnostic analysis of the source code written in any language that has a
LLVM frontend. Algorithm 3 shows our method for data-oriented gadget identification.
Our analysis iterates through all functions in the program. For each function, we scan
through the CFG to find store instructions (line 6). We treat each store instruction as
a store micro-operation of a new potential gadget. Then our analysis uses a backward
data-flow analysis to identify the definitions of the operands in the store instruction
(line 7). The generated data-flow contains the instructions that derive the operands.
Note that the backward slice is performed within the function. Therefore the slice stops
at the function boundary. Then we check all the inputs to the slice (line 8). If any input

is loaded from memory (line 9), we mark it as a data-oriented gadget (line 10).

Gadget Classification. We classify data-oriented gadgets into different categories
based on their semantics and computed variables. Gadgets with the same semantics
are functional-equivalent to simulate one MINDOP operation. The assignment gadgets
can be used to prepare operands for other gadgets. Conditional gadgets are useful to
implement advanced calculations from simple gadgets (like simulating multiplication
with conditional addition in Section 5.2.2). There are no function call gadgets in data-
oriented programming, as it does not change the control data. Based on the computed
variables, we further classify gadgets into three categories: global gadget, function-
parameter gadget and local gadget. Global gadgets operate on global variables. Mem-
ory errors can change these variables from any location. A function-parameter gadget
operates on variables derived from function parameters. Memory errors that can con-
trol the function parameters can use gadgets in this category. Local gadgets compute
on local variables, where only the memory errors inside the function can activate them.
One concrete memory error can use gadgets in various categories. For example, a stack
buffer overflow vulnerability can use local gadgets if it can corrupt related local vari-
ables. It can also use function-parameter gadgets if the corrupted local variables are

used as parameters of function calls. If the buffer overflow can be exploited to achieve
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Algorithm 4: Gadget dispatcher identification.

Input: G:- the vulnerable program
Output: D:- gadget dispatcher set
1 D=0;
2 FuncSet = getFuncSet(G)
3 foreach f € FuncSet do

4 foreach loop = getLoop(f) do /* getLoop(f): the set of loops inside function f. */
5 loop.gadgets = ()

6 foreach instr = getNextInstr(loop) do

7 if isMemStore(instr) then

8 loop.gadgets U= getGadget(instr) /* retrieve the gadget associated with instr */
9 else if isCali(instr) then /* isCall(instr): true if instr is call instruction */
10 target = getTarget(instr) /* get the call target */
1 loop.gadgets U= getGadget(target)

12 if loop.gadgets != () then

13 D =D U {loop}

/* Refer Algorithm 3 for other functions. */

arbitrary memory writing, even the global gadgets can be used to build attacks *.

We use classification to prioritize gadget selection: global gadgets are prioritized
over function-parameter gadgets, and local gadgets are considered at last. We further
prioritize the identified potential gadgets based on their features, which include the
length of the instruction sequence and the number of simulated operations. Shorter
instruction sequences with single MINDOP semantic are prioritized over longer, multi-

semantic instruction sequences.

5.3.3 Dispatcher Identification

We use static analysis on LLVM IR for the initial phase of dispatcher identification. In
this step, our method does not consider any specific memory error. Algorithm 4 gives
the dispatcher identification algorithm. Similar to Algorithm 3, our search covers all
functions. Since loops are necessary for attackers to repeatedly connect gadgets, we
first identify all loops in the function (line 4). For each loop, we scan the instructions
in the loop body to find interesting gadgets with Algorithm 3 (line 6 - 8). For function
calls within the loop, we step into functions through the call graph and iterate through
all instructions inside (line 9 - 11). This gives us an over-approximate set of gadget
candidates for a particular dispatcher. If the loop contains at least one useful gadget
(line 12), we add it into the dispatcher set (line 13). As with the gadget finding, we also
prioritize dispatchers based on loop size and loop condition.

The second phase of dispatcher identification correlates the identified dispatcher

“Like the cases in Section 5.4
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candidates with a known memory error. In this phase, we use a static-dynamic approach
to provide identification results with varying degrees of coverage and precision. Static
analysis provides a result with larger coverage but less precise, while dynamic analysis
allows for the converse. In our static analysis, the correlation is done by reachability
analysis of loops based on program’s static CFG. We mark a loop as reachable if it
enfolds the given memory error. For dynamic analysis, we consider the function call
trace after the execution of the vulnerable function until the program termination. Any
loops inside the called functions are treated to be under the control of memory error.

We merge the dispatchers from static analysis and dynamic analysis as the final result.

5.3.4 Attack Construction

We manually construct our final attacks with data-oriented programming using the re-
sults of our previous analysis. For a given concrete memory error, the available gadgets
and dispatchers rely on the location of the vulnerable code in the program, while the
stitchability of gadgets depends on the corruptibility of the memory error. To connect
two disjoint data-oriented gadgets, attackers should have the control over the address
in the load micro-operation of the second gadget or the address in the store micro-
operation of the first gadget. Attackers can modify the addresses into expected values
when the address values are known in advance (through information leakage or deter-
ministic address analysis. Based on the gadget classification, we complete the stitching
steps manually, with the following method. Due to the limitation of human effort, the
manual construction may miss some possible attacks. However, our goal is to demon-
strate the expressiveness of data-oriented attacks, instead of soundness. We leave the

last step of the automatic construction as the future work.

1. Gadget preparation (Semi-automated). Given a memory error, we locate the
vulnerable function from the program source code. Then we identify the gadget

dispatchers that enfold the vulnerable code and collect the data-oriented gadgets.

2. Exploit chain construction (Manual). We take the expected malicious MIN-
DOP program as input. Each MINDOP operation can be achieved by any data-
oriented gadget in the corresponding functional category. We select gadgets based

on their priorities.
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3. Stitchability verification (Manual). Once we get a chain of data-oriented gad-
gets for desired functionality, we verify that every stitching is possible with the
gadget dispatcher surrounding them. We feed concrete input to the program to
trigger memory errors to connect expected gadgets. If the attack does not work,

we roll back to Step 2) to select different gadgets and try the stitching again.

5.4 Evaluation

In this section, we measure the feasibility of data-oriented programming and answer
the research questions outlined in Section 5.1.3. We first show the prevalence of data-
oriented gadgets and gadget dispatchers in real-world x86 programs (P1). We sample
the identified gadgets and empirically verify if they are stitchable with known CVEs.
We find both Turing-complete data-oriented gadgets as well as dispatchers in interactive
and non-interactive mode (P2). We demonstrate three end-to-end case-studies which
use DOP to exploit the program while bypassing ASLR and DEP to highlight the utility

of Turing-completeness (P3).

Selection of Benchmarks. We select 9 widely used applications with publicly known
CVE:s for our evaluation. These applications provide critical network services (like FTP,
HTTP, cryptocurrency) and thus are common targets of real-world exploits. Specifi-
cally, we study FTP servers (WU-FTPD [79], ProFTPD [9]), HTTP server (nginx [74]),
daemons (bitcoind [1], sshd [11]), network packet analyzer (Wireshark [14]), user li-

brary musl libc > [7], and common user utilities (mcrypt [6], sudo [12]).

5.4.1 Feasibility of DOP

We study our 9 applications and measure the number of x86 gadgets that can simulate

MINDOP operations. We aim to evaluate the following four aspects in our analysis:

* Empirically justify the choice of operations in MINDOP based on the prevalence

of x86 gadgets.

* Study the distribution of various types of gadgets.

SWe analyze standard C library musl libc instead of glibc [4] because glibc cannot be compiled with
LLVM. In our analysis, we use BusyBox [2] built against musl libc.
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* Measure the reachability of these x86 gadgets in concrete executions in presence

of an exploitable memory error.

* Verify if the memory errors (in the public CVEs) have the capability to control

the input operands and activate the gadgets in concrete executions.

Choice of MINDOP Operations. Table 5.7 shows our static analysis results, includ-

ing the number of x86 gadgets and gadget dispatchers to simulate MINDOP operations.

* x86 Gadgets. We identified 7518 data-oriented gadgets from 9 programs. 8 pro-
grams provide x86 data-oriented gadgets to simulate all MINDOP operations. In
fact, there are multiple gadgets for each operation. These gadgets provides the
possibility for attackers to enable arbitrary calculations in program memory. An-
other program, bitcoind, contains x86 gadgets to simulate MINDOP operations
except load and store. This result implies that real-world applications do embody
MINDOP operations and are fairly rich in DOP expressiveness.

* x86 Dispatchers. Our programs contain 5052 number of gadget dispatchers in
total, such that each program has more than one dispatcher (See Column 4 in
Table 5.7). 1443 of these dispatchers contain x86 gadgets of our interest (See
Column 5 in Table 5.7). More importantly, programs such as sudo with relatively
fewer number of loops w.r.t LOC, still contains 16 dispatchers to trigger x86
gadgets. This means that the dispatchers are abundant in real-world programs to

simulate MINDOP operations.

Gadgets Classification. We classify our x86 gadgets into three categories based on
the scope of the operands (see Section 5.3.2). Attackers can control the inputs of global
gadgets from a memory error at any location. For function-parameter gadgets, attackers
can control their inputs only if the memory error occurs before the parent function. We
currently ignore the local gadgets as it has a strict requirement. Instead, we consider
the gadgets taking both global inputs and function-parameter inputs, classified as hy-
brid gadgets. An arbitrary memory error provides partial control over hybrid gadgets.
Table 5.7 reports the number of gadgets in each category for our examples. 8 out of 9
programs have at least one class of gadget for each operation, which shows that highly

controllable gadgets are common in real-world vulnerable programs.
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Execution Reachability from Memory Errors. The nature of the memory vulnera-
bility —location in the code and the corruptible memory region — decides if the execution
can reach a specific gadget or not. To estimate how many gadgets in the program are
reachable, we select one concrete vulnerability from the CVE database per program
(See Column 2 in Table 5.8). We run the vulnerable program with the given CVE PoC
to get the dynamic function call trace, including the vulnerable function. From the
function call trace, we identify the functions invoked by the vulnerable function, and
loops surrounding the vulnerable function. The gadgets inside the invoked functions
and enfolding loops are the reachable gadgets from the dispatcher. Table 5.8 shows the
number of reachable gadgets in our programs. In total there are 1273 reachable gadgets
via the listed CVEs. 4 out of 9 programs have at least one dispatcher and one gadget
of each type reachable from the selected CVE, which can be used to simulate all oper-
ations in MINDOP. Thus, these selected real-world vulnerabilities have the ability to

reach a large number of data-oriented gadgets and invoke many dispatchers.

Corruptibility of the CVE. A reachable gadget does not necessarily imply a cor-
ruptible gadget. For example, memory errors with only stack access can use function-
parameter gadgets and hybrid gadgets at most, while memory errors with arbitrary read-
write access can activate any x86 gadgets. To this end, we dynamically analyze the ac-
tual corruptibility of memory errors confirmed with concrete execution of PoC exploits.
The data provide evidence of the prevalence of reusing existing CVEs to construct DOP
attacks. For example, 5 out of the 6 stack-based buffer overflow vulnerabilities can use
the assignment operations to achieve arbitrary write access (Column 3, 4 in Table 5.8).
8 out of 9 vulnerabilities enable arbitrary write capabilities with which the attacker can
trigger a total of 1273 global gadgets (Column 13 in Table 5.8). In case of bitcoind, the
attacker can only control local variables within the function using the CVE. Since we
ignore the local gadgets in our analysis, we cannot simulate any MINDOP operations

with this particular memory error.

Manually Confirmed Stitchability. Note that we have not checked each of 1273 gad-
gets against each CVE run to construct complete exploits — this is an onerous manual

task. We have sampled a few cases and manually executed and verified if they are trig-
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gerable and stitchable using the CVE. The cases that we confirmed as exploitable by
running the exploits and dynamically analyzing the execution are denoted by a check-
mark (v') in Table 5.8. We have also constructed end-to-end attacks using some of these

gadgets as discussed in Section 5.4.3.

5.4.2 Turing-Complete Examples

We have established that x86 data-oriented gadgets required to simulate MINDOP exist
in real-world applications and can be triggered by the concrete vulnerabilities. Next we
evaluate the ease of stitching multiple gadgets for building Turing-complete exploits.
Currently we resorted to prioritizing cases and manually checking a random sample of
gadgets based on their type and concrete memory errors. Automatic construction of
DOP attacks are possible, like our previous work. However, it is much challenging to
achieve as DOP requires to stitch hundreds of small gadgets. This is not a problem here
as our goal is to demonstrate the expressiveness of data-oriented programming, instead
of providing an automatic construction method. We present the details of two represen-
tative examples wherein the attacker: (1) actively interacts with the program, observes
the behavior and crafts the next attack payload; (2) sends a single payload which trig-
gers all the gadgets to execute the attacker’s MINDOP program. Readers interested in
end-to-end real attacks can read Section 5.4.3 first, where we show expressive attacks

with these Turing-complete gadgets.

5.4.2.1 Interactive — ProFTPD

ProFTPD is a light-weight file server and its 1.2-1.3 versions have a stack-based buffer
overflow vulnerability in the sreplace function (CVE-2006-5815 [78]). Line 14 in
Code 5.6 shows the string copy which overflows the stack buffer buf. We confirm that
the dispatcher around this memory error and the data-oriented gadgets can be used to
build Turing-complete calculation. We use the following methodology to implement

MINDOP virtual operations with the x86 data-oriented gadgets in ProFTPD.

* Conditional assignment operation. We use the sstrncpy function to simulate
an assignment which moves data from one arbitrary location to another arbitrary

location. In the first iteration of the while loop (Line 10-15 in Code 5.6), the
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//memory error & assignment
// cmd_loop () —>pr_cmd_dispatch () =>_chdir ()
// ->pr_display_file()->sreplace ()
char *sreplace(char » s, ...) {

char xsrc, xcp, xxmptr, xxrptr;

char *marr[33], *xrarr[33];

0N N B W~

char buf [PR_TUNABLE_PATH_MAX] = {’\0’};
src = s; cp = buf; mptr=marr; rptr=rarr;
9 50 C
10 while (xsrc)
11 for (; *mptr; mptr++, rptr++) |
12 //1lst round: memory error
13 //2nd round: assignment
14 sstrncpy (cp, *rptr,blen-strlen (pbuf)) ;
15 }
16}

Code 5.6: Code snippet of ProFTPD, with a stack-based buffer overflow. This code is
also used to simulate the assignment gadget.

1 //load : cmd_loop()—->pr_cmd_dispatch ()—->_chdir ()
2 // —>pr_display_file ()
3 int pr_display_file(...) {...

4 outs = sreplace(p, buf, ...,

5 "$V", main_server->ServerName, ) ;

6 pr_response_send_raw ("%s-%s", code, outs);
7}

8 wvoid pr_response_send_raw (const char xfmt,...) {
9 vsnprintf (resp_buf, size, fmt, msqg);

10 1}

Code 5.7: Simulated load gadget. This code copies data from a global variable
ServerName to a global buffer resp_buf. With the assignment gadget that reads
rresp-buf to &§ServerName, we get the load gadget.

memory error corrupts the variable cp and content of the array rarr. So in the
next iteration, both the source and the target of the string copy sstrncpy are
controlled by the attacker. This way, the attacker simulates a MINDOP assign-
ment operation. This gadget is conditional because the attacker can corrupt src,
which is the condition for the second round of the loop body. If the condition is
not satisfied, the assignment operation will not be executed.

* Dereference operations (Load / Store). The load operation takes two memory
addresses as input (say p and q) and performs operation *p=x »g. We decompose
the operation into two sub-operations: *ptmp=xq and *p=x*tmp, such that the
ptmp is the address of tmp. In ProFTPD, we use the assignment gadget to move
data from the resp_buf to &§ServerName as the first dereference. Then we
use the function pr_display_file (Line 4, Code 5.7), which reads the content

of ServerName to the buffer resp_buf as the second dereference. These two

102



dereferences form a MINDOP load operation »resp_buf=++resp._buf. The

MINDOP store operation is simulated by a similar method.

//addition : cmd_loop ()->pr_cmd_dispatch ()

// —>xfer_ log_retr ()

MODRET xfer_log_retr (cmd_rec *cmd) {
session.total_bytes_out += session.xfer.total_bytes;

}

O O R S R

Code 5.8: Simulated addition gadget. This code adds two fixed memory locations.
Arbitrary memory addition can be achieved by combining this gadget with the
assignment gadget.

* Addition operation. Code 5.8 shows the code in ProFTPD which adds two vari-
ables. The structure session is a global variable and hence all the operands of
this gadget are the under attacker’s control. To achieve an addition operation on
arbitrary memory locations, we use the MINDOP assignment operation to load
operands from desired source locations to the session structure, perform the
addition, and then move the result to the desired destination location.

* (Conditional) jump operation. Code 5.9 shows the ProFTPD program logic to
read the next command from an input buffer. pbuf->current is a pointer to
the next command in the input, thus forming a virtual PC for the attacker’s MIN-
DOP program. By corrupting pbuf->current, the attacker can select a par-
ticular input that invokes a specific MINDOP operation. We use the assignment
operation to conditionally update the virtual PC, thus simulating a conditional

jump operation.

To stitch these identified gadgets together, we identified a gadget dispatcher (Code 5.9)
in the function cmd_loop. It contains an infinite loop that repeatedly reads requests
from the remote attackers or cached in the buffer and dispatches the request to functions
with various gadgets. For each request, the attacker embeds a malicious input which
first exploits the memory error to prepare the memory state for one of these gadgets and
then triggers the expected gadget to achieve the MINDOP operation. In Section 5.4.3

we show the case studies of expressive exploits against ProFTPD.
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1 //dispatcher & jump :

2 void cmd_loop (server_rec *server,conn_t =*c) {
3 while (TRUE) ({

4 pr_netio_telnet_gets (buf, ..);

5 cmd = make_ftp_cmd(buf, ...);

6 pr_cmd_dispatch(cmd); //calls functions
7 // with memory errors and gadgets
8 }

9 1}

10 char xpr_netio_telnet_gets (char *buf,...) {
11 while (xpbuf->current != "\n’ && toread>0)
12 //reads through virtual PC

13 *buf++ = xpbuf->current++;

14 1}

Code 5.9: Gadget dispatcher and simulated jump gadget. pbuf->current is the
virtual PC pointing to the malicious input.

5.4.2.2 Non-interactive — Wireshark

Wireshark is a widely-used network packet analyzer and its versions before 1.8.0 have a
stack-based buffer overflow vulnerability (CVE-2014-2299 [76]). The fixed-size buffer

pd (shown on Line 5 of Code 5.10) in function packet_list_dissect_and_cache_record
accepts frame data from a mpeg trace file. If the attacker sends a malicious trace file con-

taining a large frame (larger than Ox £ £ £ f), the frame data overflows the buffer. This is

used to overwrite variables col, cinfo, and parameter packet _1ist with malicious

input. These corrupted values are then passed to the function packet_list_change_record

which contains all the x86 data gadgets of our interest.

* Assignment operation. We identify an assignment operation from the function
packet_list_change _record, called after the memory error function. Line
16 in Code 5.10 shows the gadget, where memory copy addresses are under
the attack’s control. col_text and col_data are of gchar =x type, so
the assignment operation performs two dereferences per operand. To simulate
a simple assignment from one memory location to another, the attacker corrupts
record->col_text and cinfo->col_data. This is achieved by corrupt-
ing record and cinfo to point to controllable memory regions, where the
value of record->col_text and cinfo->col_data will be retrieved.

* Dereference operations (Load / Store). Line 16 in Code 5.10 also serves gadgets
for simulating load and store operations of MINDOP, as it has two dereference

operations. To simulate a load operation, the attacker corrupts record->col_text
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/vulnerable function

void packet_list_dissect_and_cache_record

}

(PacketList xpacket_list, ...) {
gint col; column_info *cinfo;
guint8 pd[WTAP_MAX_PACKET_SIZE]; //vul buf
//memory error function
cf_read_frame_r(...,fdata,...,pd);
packet_list_change_record(packet_list,
.,col, cinfo);

//gadgets: assignment/load/store/addition
void packet_list_change_record (PacketList *

{

}

packet_list,..,gint col,column_info *cinfo)

record = packet_list->physical_rows[row];
record->col_text[col] =
(gchar =) cinfo->col_data([col];
if (!record->col_text_len[col])
++packet_list->const_strings;

void gtk_tree_view_column_cell_set_cell_data(..)

{

}

for (cell_list = tree_column—->cell_1list;
cell_list; cell_list = cell_list—>next) {

//finally calls vulnerable function
show_cell_data_func();

Code 5.10: Wireshark code snippet of the vulnerable function and gadgets.

and cinfo. To simulate a store operation, the attacker can change the value of
recordand cinfo->col_data.

Conditional addition operation. Lines 18-19 in Code 5.10 show a data gadget to
perform a conditional increment operation. At each time this gadget is invoked
it adds 1 to the target location. With the condition, we can implement an addi-
tion operation over arbitrary memory locations, where the attacker controls the
condition as well as the operand of the increment.

Conditional jump operation. The memory error is triggered by the file read, and
the program maintains a file position indicator in the F ILE structure. The attacker
can change the file position indicator to force the program to non-linearly access
the data frames in the file. This way the file position indicator serves as a vir-
tual PC for the MINDOP program in Wireshark. Using the conditional addition
operation, the attacker can simulate the MINDOP conditional jump operation by

manipulating the file position indicator.

Since all the gadgets are executed after the memory error, each execution of the
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memory error can stably invoke at least one MINDOP operation. To chain a large
number of gadgets together, we identify a gadget dispatcher from the parent func-
tion gtk_tree_view_column_cell_set_cell_data, as shown in Line 21-27,
Code 5.10. In the first invocation of the memory error, the attacker uses the assignment
operation to corrupt the loop condition ce11_11st, and points it to a fake linked-list in
the malicious payload, making it an infinite loop. In each of the subsequent executions,
the program reads malicious frame data to trigger different gadgets to synthesize the

execution of expected MINDOP operations.

5.4.3 Why are Expressive Payloads Useful?

We demonstrate the stitchability of identified data-oriented gadgets by building con-
crete end-to-end exploits. We discuss three case studies to highlight the importance of
expressive payloads. Specifically, we demonstrate how MINDOP empowers attackers
to (a) bypass randomization defense without leaking addresses, (b) run a network bot

which takes commands from attackers and (c) alter the memory permission.

5.4.3.1 Example 1 — Bypassing Randomization Defenses

Typical memory error exploits bypass Address Space Layout Randomization (ASLR)
by mounting a memory disclosure attack to leak randomized addresses to the net-
work [134]. But if the memory corruption vulnerability cannot leak / disclose the ad-
dresses then the attack fails. We show how to defeat ASLR with DOP without leaking
any addresses to the network. As a real example, consider the vulnerable ProFTPD
server, which internally uses OpenSSL for authentication. Our goal is to leak the
server’s OpenSSL private key. The program stores this key in a randomized mem-
ory region, so a direct access to it in presence of ASLR is not viable. We find that
the private key has a chain of 8 pointers pointing the private key buffer, as shown in
Figure 5.3. The locations of all the pointers except the base pointer are randomized;
only the base pointer is reliably readable from the memory error. However, creating a
reliable exploit needs to de-randomize 7 out of 8 pointers successfully to leak the key
without any network disclosure of addresses!

DOP is able to successfully construct such an attack. The key idea is to use a short

MINDOP virtual program that starts from the base pointer (of known location) and
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Proftpd’s memory DOP attack steps
MOV | *addrl = *0x080dbc28 (ssl_ctx)

SSL_CTX * ssl_ctx ADD *addrl = *addr1 + offsetl
MOV | *addr2 = *addrl
LOAD | *addr3 = **addr2 (cert)

MOV | *addrl = *addr3

ADD *addrl = *addr1 + offset2
MOV | *addr2 = *addrl

CERT_PKEY * key LOAD | *addr3 = **addr2 (key)
MOV | *addrl = *addr3

ADD *addrl = *addr1 + offset3
MOV | *addr2 = *addrl

LOAD | *addr3 = **addr2 (privatekey)
MOV | *addrl = *addr3

ADD *addrl = *addr1 + offset4
MOV | *addr2 = *addrl

LOAD | *addr3 = **addr2 (rsa)
MOV | *addrl = *addr3

ADD *addrl = *addr1 + offset5
MOV | *addr2 = *addrl

LOAD | *addr3 = **addr2 (d)
MOV | *addrl = *addr3

ADD *addrl = *addr1 + offset6
MOV | *addr2 = *addrl

LOAD | *addr3 = **addr2 (d)

struct cert_st * cert

EVP_PKEY*privatekey

struct rsa_st * rsa

BIGNUM * d

BN_ULONG * d

Private Key

Figure 5.3: Pointer dereference chain and malicious MINDOP program in attack
against ProFTPD. The attack requires 8 memory dereferences from the deterministic
location to the private key. Each dereference is implemented by 4 gadgets.

dereferences it 7 times within the server’s memory to correctly determine the random-
ized location of the private key. The virtual program needs to perform additions to
compute the correct offsets within structures of intermediate pointers. In total, the vir-
tual program takes 24 iterations, computing a total of 23 intermediate values to obtain
the final address of the private key. Once we have the private key buffer’s address, we
simply replace an address used by a public output function, causing it to leak the pri-
vate data to the network. We use the vulnerability CVE-2006-5815 [78] to simulate the
malicious MINDOP program (as shown in Figure 5.3), and create an interactive DOP
program that corrupts the program memory repeatedly. Each group of 4 gadgets per-
forms one complete dereference operation. Note that addr1, addr2 and addr3 are
fixed addresses in the gadgets. Therefore, the MOV between ADD and LOAD is necessary

to deliver operands between operations.

Remark. TASR, a recent improvement in randomization defense, proposes to re-
randomize the locations of code pointers frequently, such as on each network access
system call (read or write) [32]. The primary goal of this defense is to reduce the
susceptibility of commodity ASLR to address disclosure attacks. DOP can work even in
the presence of such timely re-randomization because of two reasons. Firstly, TASR is

applied to code pointers only, whereas our attack executes completely in the data-plane.
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dlopen(...) < head
{/* use head */ } @rand_addr (@ Trigger
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Memory . payload Malicious payload
> MOV _ | - (inProftpd’s memory)
e [T MOV |
L mov L Al o
Moy
) MOV T

Figure 5.4: Simulating a network bot. There are two steps in this attack: (I) Prepare
the payload in Proftpd’s memory; (2) Trigger the memory error. Each step uses many
data-oriented gadgets.

Secondly, non-interactive DOP attacks can perform all the necessary computation in-
place between two system-calls. Even if the same techniques are deployed on data
pointer, DOP can still bypass them. For example, given simple programs in Code 5.11
and Code 5.12 (in Section 5.5.2.1 and Section 5.5.2.2), TASR cannot defend it against

DOP attacks. We refer interested readers to Section 5.5.2.3 for details.

5.4.3.2 Example 2 — Simulating A Network Bot

One consequence of rich expressiveness in DOP exploits is that a vulnerable program
can simulate a remotely-controlled network bot on the victim program. Though concep-
tually feasible, executing an end-to-end attack of such expressiveness requires careful
design, which we illustrate in our concrete attack in ProFTPD.

ProFTPD invokes the d1open function in its PAM module to dynamically load
libraries. We analyzed d1open to confirm that it has all the gadgets to simulate MIN-
DOP (also see Shapiro et al. [150]). If the memory error allows the attacker to control
a global metadata structure, ProFTPD provides the Turing-complete computation. In a
normal execution, this metadata is loaded from a local object file; however, the remote
attacker does not have the ability to create malicious object files on the server to misuse
dlopen. To circumvent this, the attacker uses DOP to construct a first-stage payload
in-memory and delivers it to d1 open which in turn executes the payload.

The main challenge in achieving this is ProFTPD’s network input sanitization logic.
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It does not allow the attacker to directly supply the payload metadata object via a re-
mote attack exploit. ProFTPD imposes several constraints on network inputs — inputs
cannot contain a set of bytes such as zero, newline, and several other characters. To
bypass these restrictions we build an interactive virtual program that serves as a first-
stage payload. It sends malicious input that respects the program’s constraints, and
constructs the second-stage payload in the program’s memory. It does so by copying
the existing program memory bytes (instead of network input) to the payload address
using MOV operations (Step 1 in Figure 5.4). In our end-to-end exploit, we perform
over 700 interactions with the server to compose the malicious second-stage payload.
Then we use movement and dereference operations to trigger the memory error (Step
2 in Figure 5.4). With these steps, our exploit bypasses all the constraints on network
inputs and enables arbitrary computation in the second-stage of the exploit. Finally, we
force the program to invoke d1open and execute the second-stage of the exploit. This
simulates a bot that can repeatedly react to network commands sent to it remotely. We

confirm that the bot performs arbitrary MINDOP program computation we request.

5.4.3.3 Example 3 — Altering Memory Permissions

Several control-flow and memory error defenses use memory page protection mecha-
nisms as an underlying basis for defense. For instance, CFI defenses use read-only legit-
imate address tables to avoid metadata corruption [182] and DEP uses non-executable
memory regions to prevent code injection attacks [21]. However, some critical func-
tions, such as those in the dynamic linker, disable all memory protections temporarily
to perform in-place address relocations. This gives the attacker a window of opportunity
to violate the assumptions of the aforementioned defenses. To construct a successful ex-
ploit, the attacker utilizes the logic of the dynamic linker to corrupt the locations of its
choice at runtime. The expressiveness of DOP is vital here — we have successfully
built a second-stage exploit for d1open (using a crafted metadata similar to Example
2 above) that permits arbitrary memory corruption or leakage of attacker-intended loca-
tions. We experimentally confirm that such exploits can bypass CFI implementations,
like binCFI (utilizing read-only address translation tables [182]) or fixed-tag based so-
lutions (assuming non-writable code region) [15], to effect control-hijacking exploits in

ProFTPD. We refer interested readers to Section 5.5.2.3 for details.
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5.4.4 Immunity against Control-Oriented Defenses

We have experimentally checked that our end-to-end exploits work when ASLR and
DEP are enabled on the victim system. All 3 attacks work without reporting any error
or warning. The first attack successfully sends the server’s private key to the malicious
client. For the second attack, we confirm that the bot performs arbitrary MINDOP
program computation we request. While for the third attack, we modify the code section

(provided by DEP) to start a shell in the server process.

5.5 Discussion

We have shown that DOP exploits can create semantically expressive payloads without
violating the integrity in the control plane. In this section we discuss their implication,
in particular, the effectiveness in re-enabling control-hijacking exploits and possible

defenses to mitigate them.

5.5.1 Re-Enabling Control-Hijacking Attacks

A natural question is whether DOP can undermine control-flow defenses to re-enable
attackers to perform control-hijacking attacks. First, our results have shown that by-
passing commodity ASLR is feasible, without the need for memory disclosures. Com-
modity ASLR implementations randomize memory segments at the start of the applica-
tion [134]. Newer defenses propose to re-randomize the program memory periodically,
say at certain I/O system calls, thereby increasing resistance to disclosed addresses. One
such proposal, called TASR [32], restricts randomization to code pointers. As we have
discussed, it can be bypassed using a non-interactive DOP attack. Code randomization
defenses typically aim to prevent ROP gadgets from either preventing their occurrence
or randomizing their locations. If these defenses rely on keeping secret metadata in
memory, then DOP offers a way to bypass protection. However, some randomization
techniques do not make such assumptions [62], and conceptually not bypassable by
DOP attacks.

A number of solutions for enforcing control-flow integrity have been proposed.
Some of them rely on memory page permission to protect code integrity or metadata

integrity. For example, Abadi et al. uses non-writable target IDs in memory to identify
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legitimate control transfer targets [15]. BinCFI relies on non-writable address transla-
tion table to enforce target checking [182]. DOP attacks can corrupt such non-writable
IDs, or non-writable translation tables, and thus re-enable code reuse attacks. More se-
riously, DOP can directly modify non-writable code region to re-enable code-injection
attacks, as we discuss in Section 5.4.3.3. Even if the IDs values are randomized to avoid
effective guessing (an alternative to read-only IDs), DOP can still read the ID content
and reuse it to build “legitimate” code blocks.

Furthermore, a class of defenses aims to protect integrity of code pointers, either
via cryptographic techniques or via memory isolation and segmenting [109, 113]. Code
pointer integrity (CPI) is one such defense, which is based on memory isolation [109].
CPI is designed to isolate code pointers and data pointers that eventually point to code
into another protected memory region. Since the defense accounts for data pointers,
one way to bypass it is to break the isolation primitives (e.g., SFI [165]). Conceptually,
DOP attacks so far have not yet been able to demonstrate such capability. Cryptograph-
icaly enforced CFI (CCFI) is another technique which cryptographically protects code
pointers [113]. The authors acknowledge that protecting data pointers that may point to
code pointers is important for achieving control-flow safety; however, this is left out of
scope of the work’s proposals. DOP attacks can easily change data pointers that point
to code pointers to violate CFI if they are left unprotected. We have checked the possi-
bility for a simple proof-of-concept program against the CCFI implementation (details
in Section 5.5.2.1).

Finally, we point out that our discussion here pertains to explicitly subverting the
goals of control-flow hijacking defenses. If subverting control-flow is not the goal,
DOP executes in the presence of all such defenses without disturbing any control-flow

properties or code pointers. We have experimentally checked for these in Section 5.4.4.

5.5.2 Example Vulnerable Programs
5.5.2.1 A Program Allowing DOP to Bypass TASR and CCFI

Code 5.11 shows a simple program where TASR and CCFI cannot prevent the control
attack built with the help of DOP, as the data pointers are not protected by TASR or

CCFI [32,113]. There are two data pointers, pms1 and pms2 and they are also pointing
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typedef struct _mystruct ({
void (*xfoo) ();
} mystruct;

void ml() = { printf{‘'‘hello from ml’’}; }
void m2 () { printf{‘hello from m2’’}; }

0N N B W~

mystruct msl = .foo = ml };

{
mystruct ms2 = { .foo = m2 };

9

10 mystruct xpmsl &msl, *pms2 = &ms2;

11

12 int main(int argc, char x argv([]) {

13 int old_value, new_value;

14 int *p = &old_value, *gq = &new_value;
15 char buf[64];

16

17 memcpy (buf, argv[l]); // memory error
18 *p = *Q; // assignment gadgets
19

20 pmsl.foo();

21 1}

Code 5.11: A simple program that enables DOP to build control attacks even if TASR
and CCFI are in place, as the data pointers are not protected.

to code pointers foo in corresponding structures. Legitimately, the indirect function
call in line 20 will call the function m1. With the memory error in line 17 and the
assignment gadget in line 18, attackers can construct data-oriented attacks to swap the

value of pms1 and pms2. Then the code in line 20 will call function m2 instead.

5.5.2.2 Another Program Allowing DOP to Bypass TASR

Code 5.12 shows a piece code to illustrate another method to bypass TASR with DOP.
This code invokes library functions, like system and setuid, thus having the func-
tion addresses in the . p1t section. With the assignment gadget in line 18, the attackers
can copy the function addresses (e.g., addresses of setuid and system) from the
.plt section to the selected memory region, like the stack location for server return
address. The gadget dispatcher in line 16 and 17 enables attackers to prepare a complete
stack context for a return-to-libc attack. When the function returns, the return-to-libc
attack will be launched. TASR fails to prevent such attack as attackers use DOP to pre-
pare the payload on the stack in the memory, without any address leakage through the

write system call.
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Disassembly of section .plt

0804adal <system@plt>:

Jmp *0x08104000
0804adb0 <setuid@plt>:

Jmp *0x08104004
0804adc0O0 <read@plt>:

Jmp *0x08104008

0N N B W~

9

10 int server (int sockfd) {

11 int old_value, new_value;

12 int *p = &old_value, *gq = &new_value;
13 int connect_limit = 100;

14 char buf[64];

15

16 while (connect_limit——) {

17 read (sockfd, buf); // memory error
18 *p = xq; // assignment gadgets
19 }

20 1}

Code 5.12: A simple program that enables DOP to break TASR, as no write operation
is necessary during attack.

5.5.2.3 Using DOP to Break CFI Implementations and DEP

BinCFI. BinCFI uses a read-only table to store all legitimate function entries and
call-sites [182]. Each function call is allowed to jump to any function entry, and each
function return is permitted to return to any call-site. A successful BinCFI attack should
lead the program call / return to arbitrary locations. We show one vulnerable program
in Code 5.13 that allows DOP to mount a BinCFI attack. With the memory error in
line 15, attackers can deliver malicious relocation metadata on the stack and change the
value of p and g. With the store gadget in line 16, attackers can change the 1ink_map
structure link list to make it link the malicious relocation metadata. One functionality of
dlopen is to patch the relocated addresses before real execution. This makes dlopen
able to modify arbitrary memory location, even code pages or read-only data sections.
When dlopen is invoked, the malicious metadata will trigger the d1open’s internal
gadgets to corrupt the read-only table. By adding expected code addresses into the table,

attackers is allowed to make the execution jump to arbitrary code region (line 19).

Protections based on Non-Writable Code Section. W®X disallows the write per-
mission on code section, or execute permission on data section, to protect code in-
tegrity [21] and control-flow integrity. For example, the CFI proposed by Abadi et al.

relies on read-only tags inside code region to enforce the security check [15]. Specifi-
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typedef struct _mystruct ({
void (*xfoo) ();
} mystruct;

void ml() = { printf{‘'‘hello from ml’’}; }

mystruct msl =
mystruct =xpmsl

0N N B W~

{ .foo = ml };

&msl;
9
10 int main (int argc, char * argv[]) {
11 int old_value, new_value;
12 int *p = &old_value, *gq = &p;
13 char buf[64];
14
15 memcpy (buf, argv([l]); // memory error
16 x%q = *p; // store gadgets
17 *p = *Q; // assignment gadgets
18
19 dlopen ("mylib.so");
20 pmsl.foo();
21}

Code 5.13: A simple program that enables DOP to build control attacks to bypass Bin-
CFI and non-writable-tag based CFI.

cally, it places tags before legitimate control-flow transfer targets and checks the target
tag with the predefined tag before each control-flow transfer at runtime. The relocation
functionality provided by DOP allows to temporally change the permission of any page
to writable, including code pages and read-only data pages. Then it updates the page
content based on arguments. Finally it changes the permission back. Attackers can
abuse this functionality to break defenses that are based on non-writable code. First,
attackers can use DOP to invoke dlopen to corrupt arbitrary code region to mount
code injection attacks. Note that the data region is still non-executable, even with DOP
attacks. Second, DOP can help change the CFI tags in code region to bypass the CFI
solution. Attackers either copy the tag from the legitimate code target to the illegal

location, or just overwrite both the checking code to disable CFI.

5.5.3 Potential Defenses for DOP
5.5.3.1 Memory Safety

Memory safety prevents memory errors in the first place, by detecting any malicious
memory corruption. For example, Cyclone and CCured introduce a safe type system
to the type-unsafe C language [105, 124]. SoftBound with CETS stores metadata for

each pointer inside a disjointed memory for bound checking and identifier matching to
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force a complete memory safety [122,123]. Cling enforces the temporal memory safety
through type-safe memory reuse [17]. Data-oriented programming utilizes a large num-
ber of memory errors to stitch various data-oriented gadgets. Hence a complete mem-
ory safety enforcement will prevent all possible exploits, including DOP. However, high
performance overhead prevents the practical deployment of current memory safety pro-
posals. For example, SoftBound+CETS suffers a 116% average overhead. Develop-

ment of practical memory safety defense is an active research area [159].

5.5.3.2 Data-Flow Integrity

Data-flow integrity (DFI) generates the static data-flow graph (DFG) before the program
execution [50]. The data-flow graph is a database of define-use relationship. DFI in-
struments the program to check whether each memory location is defined by legitimate
instructions before read operations. This way DFI prevents malicious define behaviors
that corrupt program memory. Recent work uses DFI to protect kernel security-critical
data [154]. A complete enforcement of data flow integrity in all memory regions can
mitigate data-oriented programming. However complete DFI has a high performance
overhead (44% for intraproc DFI and 103% for interproc DFI). Note that selective pro-
tection on security-critical data [154] may work on DOP, as it protects some pieces of

data, but not a panacea for all data.

5.5.3.3 Fine-grained Data-Plane Randomization

We have shown in Section 5.4.3 that coarse-grained randomization or randomization
on code region cannot prevent DOP attacks. Fine-grained data-plane randomization
can mitigate DOP attacks as DOP still needs to get the address of some non-control
data pointers [31,55]. For example, to stitch one gadget with another, DOP corrupts
the store address of the first gadget or the load address of the second gadget to make
them the same. However, a fine-grained randomization on data-plane may occur a high
performance overhead as all the data (both control-data and non-control-data) should be
randomized frequently. A data-plane randomization with high performance and strong

security guarantee is still an open question.
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5.5.3.4 Hardware and Software Fault Isolation

Memory isolation is widely used to prevent unauthorized access to high-privileged re-
sources. Only legitimate code region has access to particular variables. This can be used
to prevent unexpected access to security-critical data, like user identity. This way it can
prevent some direct-data-corruption attacks [56]. However DOP does not rely on the
availability of security-critical data — it can corrupt pointers only to stitch data-oriented
gadgets. To prevent such attacks, memory isolation has to protect all pointers from pure
data. However, it is challenging to accurately identify pointers. Further there are nu-
merous pointers in the program. Protecting all of them will introduce high-performance
overhead. Therefore isolation only prevents a part of data-oriented programming attacks

when the program is correctly protected with pointer isolation.

5.6 Related Work

In Section 5.5, we have discussed potential defenses against control-hijacking attacks

and data-oriented attacks. In this section, we focus on the most closely related work.

Data-oriented attacks. In Section 5.1.1, we have an in-depth discussion on data-
oriented attacks, including Chen et al. [56], control-flow bending attack [47] and our
previous work FLOWSTITCH. The difference between DOP and others is that DOP does
not rely on any specific security-critical data or functions, like password or printf-like
functions. Instead, it only reuses abundant data-oriented gadgets to build expressive
attacks. Due to this feature, it is more challenging to prevent DOP attacks. Simple
defenses mechanisms can sanitize security-critical data at particular program locations,
like system call entry. Such defenses usually have acceptable overhead as critical code is
rarely invoked in the real execution. But protecting all data pointers for all instructions

will introduce extremely high performance overhead.

Return-Oriented Programming. ROP technique and its variants have been exten-
sively explored recently [33, 35, 37,52, 102, 143, 149, 153]. For example, counterfeit
object oriented programming (COOP) demonstrates that Turing-complete attacks can

be built with only virtual function calls in C++ [143]. However, ROP attacks change
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the control flow of the vulnerable program, which can be mitigated by rapidly advanc-
ing control-flow integrity solutions [15, 63,129, 130, 160, 163, 182]. In contrast, data-
oriented programming manipulates variables in the data plane and keeps the original

control-flow. It works even when advanced control-flow defenses are deployed.

Turing-Complete Weird Machines. Several work exploits auxiliary features in soft-
ware to provide Turing-complete computation, called weird machines. Shapiro et al.
used the dynamic loader on Linux system to provide such computation ability [150],
which is used by DOP to build further attacks. Other weird machines can be built with
DWARF (Debugging With Attribute Records Format) bytecode [131], the page fault
handling mechanism [27] or the DMA (direct memory access) component [140]. DOP

demonstrates the Turing-completeness in the data plane of arbitrary x86 programs.

5.7 Summary

In this work, we show that with a single memory error, data-oriented attacks can mount
Turing-complete computation using data-oriented programming. Our experiments on
9 real-world applications show that data-oriented gadgets and gadgets dispatchers re-
quired for DOP are prevalent. We build 3 end-to-end attacks to demonstrate the practi-

cal implications of not protecting the program’s data-plane.
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Chapter 6

Conclusion

Memory errors are persistent threats to system security. The arms race between attack-
ers and defenders will not end in the near future. Attackers are proactively seeking new
exploit methods to bypass existing defense mechanisms. Even known vulnerabilities
can cause severe damage with advanced exploits.

To address this problem, we propose to use systematic analysis to identify memory
errors and discover new exploit methods. We define and work out three novel projects.
We first provide a systematic solution to detect memory errors during the privilege-
based isolation. After privilege-based isolation, program partitions get extra memory
access capability, which may bring new memory errors into existing programs. Our
detection method identifies real threats in real-world programs. Then we explore the
new exploit methods in the data space. We propose a novel method, data-flow stitching,
to systematically build data-oriented attacks. Instead of corrupting particular security-
sensitive data, this method selects data flows as targets and stitch two disjoint ones
to mount severe attacks. Data-oriented exploits can bypass most of the known defense
mechanism, like DEP, CFI and even ASLR. Further, we systematically study the expres-
siveness of data-oriented attacks, with respect to the ability for arbitrary computations.
We propose data-oriented programming (DOP) to systematically find all necessary el-
ements to build expressive attacks. With a comprehensive evaluation, we demonstrate
that Turing-complete data-oriented attacks can be built from common memory errors.

Our work provides a systematic solution to proactively analyze the program to de-
tect memory errors and understand new exploits in the data space. It explores the new

exploit directions, demonstrates the severity, and illustrates the urgency for new defense
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mechanisms. We release the set of data-oriented exploits built by FLOWSTICH and
data-oriented programming at http://huhong-nus.github.io/advanced-

DOP/. As we know, this is the first exploit set for data-oriented attacks.
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